研究生: |
楊廷毅 Yang, Ting-Yi |
---|---|
論文名稱: |
邏輯演繹序列串聯質譜法應用於牡蠣肝醣多醣之結構鑑定 Logically Derived Sequence Tandem Mass Spectrometry for Structural Determination of Polysaccharide-Oyster Glycogen |
指導教授: |
倪其焜
Ni, Chi-Kung 陳頌方 Chen, Sung-Fang |
口試委員: |
倪其焜
Ni, Chi-Kung 陳頌方 Chen, Sung-Fang 張煥正 Chang, Huan-Cheng |
口試日期: | 2024/07/17 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 牡蠣肝醣 、多糖 、結構鑑定 、邏輯演繹序列串聯質譜法 |
英文關鍵詞: | oyster glycogen, polysaccharide, structure identification, LODES/MSn |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401463 |
論文種類: | 學術論文 |
相關次數: | 點閱:160 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統的多醣分析方法包含許多複雜的步驟,例如衍生化、泛甲基化、氣相層析質譜法以及核磁共振光譜(nuclear magnetic resonance, NMR)。我們實驗室近期開發出一套新的質譜方法,邏輯演繹序列串聯質譜法(logically derived sequence tandem mass spectrometry, LODES/MSn),用於醣的結構鑑定。本研究中,多醣被水解成單醣、雙醣、和各種不同尺寸的寡醣,再使用高效率液相層析法及邏輯演繹序列串聯質譜法鑑定這些單醣、雙醣和寡醣。本次研究我們利用邏輯演繹序列串聯質譜法分析牡蠣肝醣的水解產物之結構,決定了牡蠣肝醣的最小分支結構,幫助了解牡蠣肝醣結構裡的實際分支狀況。邏輯演繹序列串聯質譜法能以極少量的樣品決定醣類的結構,並縮短鑑定所需的時間,將是鑑定多醣基本結構的有力工具。
Conventional polysaccharide analysis involves complex procedures, including chemical derivatization, permethylation, gas chromatography/mass spectrometry, and nuclear magnetic resonance spectrometry. We have recently developed a new mass spectrometry method, Logically Derived Sequence Tandem Mass Spectrometry (LODES/MSn), for the structural identification of carbohydrates. In this study, polysaccharides were hydrolyzed into monosaccharides, disaccharides, and various sizes of oligosaccharides. These monosaccharides, disaccharides, and oligosaccharides were identified by using high-performance liquid chromatography and LODES/MSn. In this research, we utilized LODES/MSn to analyze the structure of hydrolysis product of oyster glycogen, determining the minimal branching structures within oyster glycogen, which aids in understanding real branching patterns in oyster glycogen. LODES/MSn allows for the determination of carbohydrate structures with small amounts of sample and significantly reduces the time required for identification, making it a powerful tool for identifying the basic structures of polysaccharides.
1. Varki, A.; Cummings, R. D.; Esko, J. D.; Stanley, P.; Hart, G. W.; Aebi, M.; Darvill, A. G.; Kinoshita, T.; Packer, N. H.; Prestegard, J. H., Essentials of Glycobiology [internet]. 2015.
2. Leeflang, B. R.; Faber, E. J.; Erbel, P.; Vliegenthart, J. F., Structure elucidation of glycoprotein glycans and of polysaccharides by NMR spectroscopy. Journal of biotechnology 2000, 77 (1), 115-22.
3. Schindler, B.; Barnes, L.; Renois, G.; Gray, C.; Chambert, S.; Fort, S.; Flitsch, S.; Loison, C.; Allouche, A. R.; Compagnon, I., Anomeric memory of the glycosidic bond upon fragmentation and its consequences for carbohydrate sequencing. Nature communications 2017, 8 (1), 973.
4. Terol, A.; Paredes, E.; Maestre, S. E.; Prats, S.; Todoli, J. L., Rapid and sensitive determination of carbohydrates in foods using high temperature liquid chromatography with evaporative light scattering detection. Journal of separation science 2012, 35 (8), 929-36.
5. Dell, A.; Morris, H. R., Glycoprotein structure determination by mass spectrometry. Science (New York, N.Y.) 2001, 291 (5512), 2351-6.
6. Stellner, K.; Saito, H.; Hakomori, S. Determination of aminosugar linkages in glycolipids by methylation: Aminosugar linkages of ceramide pentasaccharides of rabbit erythrocytes and of Forssman antigen. Arch. Biochem. Biophys. 1973, 155 (2), 464–472.
7. Hsu, H. C.; Liew, C. Y.; Huang, S.-P.; Tsai, S.-T.; Ni, C.-K., Simple approach for de novo structural identification of mannose trisaccharides. Journal of The American Society for Mass Spectrometry 2017, 29 (3), 470-480.
8. Hsu, H. C.; Liew, C. Y.; Huang, S.-P.; Tsai, S.-T.; Ni, C.-K., Simple method for de novo structural determination of underivatised glucose oligosaccharides. Scientific reports 2018, 8 (1), 1-12.
9. Tsai, S. T.; Liew, C. Y.; Hsu, C.; Huang, S. P.; Weng, W. C.; Kuo, Y. H.; Ni, C. K., Automatic full glycan structural determination through logically derived sequence tandem mass spectrometry. ChemBioChem 2019, 20 (18), 2351-2359.
10. Hsu, H. C.; Huang, S.-P.; Liew, C. Y.; Tsai, S.-T.; Ni, C.-K., De novo structural determination of mannose oligosaccharides by using a logically derived sequence for tandem mass spectrometry. Analytical and bioanalytical chemistry 2019, 411 (15), 3241-3255.
11. Huang, S.-P.; Hsu, H. C.; Liew, C. Y.; Tsai, S.-T.; Ni, C.-K., Logically derived sequence tandem mass spectrometry for structural determination of Galactose oligosaccharides. Glycoconjugate Journal 2021, 38 (2), 177-189.
12. Manners, D. J. Recent Developments in Our Understanding of Glycogen Structure. Carbohydr. Polym. 1991, 16 (1), 37–82.
13. Chen, S.; Bouchibti, Y.; Xie, Y.; Chen, Y.; Chang, V.; Lebrilla, C. B. Analysis of Cell Glycogen with Quantitation and Determination of Branching Using Liquid Chromatography–Mass Spectrometry. Anal. Chem. 2023, 95 (34), 12884–12892.
14. Qin, X.; Fan, X.; Zhang, L.; Zheng, H.; Zhang, C.; Yuan, J. Extraction, Purification, and Structure Characterization of Polysaccharides from Crassostrea Rivularis. Food Sci. Nutr. 2018, 6 (6), 1621–1628.
15. Akai, H.; Yokobayashi, K.; Misaki, A.; Harada, T. Complete Hydrolysis of Branching Linkages in Glycogen by Pseudomonas Isoamylase: Distribution of Linear Chains. Biochim. Biophys. Acta Gen. Subj. 1971, 237 (3), 422–429.
16. Simpson, N. J., Solid-phase extraction: principles, techniques, and applications. CRC press: 2000.
17. Thurman, E. M.; Mills, M. S., Solid-phase extraction: principles and practice. Wiley New York: 1998; Vol. 16.
18. Sun, T.; Chance, R. R.; Graessley, W. W.; Lohse, D. J., A study of the separation principle in size exclusion chromatography. Macromolecules 2004, 37 (11), 4304-4312.
19. Wuhrer, M.; de Boer, A. R.; Deelder, A. M., Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass spectrometry reviews 2009, 28 (2), 192-206.
20. Buszewski, B.; Noga, S., Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Analytical and bioanalytical chemistry 2012, 402 (1), 231-247.
21. Boersema, P. J.; Mohammed, S.; Heck, A. J., Hydrophilic interaction liquid chromatography (HILIC) in proteomics. Analytical and bioanalytical chemistry 2008, 391 (1), 151-159.
22. Young, C.; Condina, M. R.; Briggs, M. T.; Moh, E. S.; Kaur, G.; Oehler, M. K.; Hoffmann, P., In-house packed porous graphitic carbon columns for liquid chromatography-mass spectrometry analysis of N-glycans. Frontiers in chemistry 2021, 9, 388.
23. She, Y.-M.; Tam, R. Y.; Li, X.; Rosu-Myles, M.; Sauvé, S., Resolving isomeric structures of native glycans by nanoflow porous graphitized carbon chromatography–mass spectrometry. Analytical chemistry 2020, 92 (20), 14038-14046.
24. West, C.; Elfakir, C.; Lafosse, M., Porous graphitic carbon: a versatile stationary phase for liquid chromatography. Journal of chromatography A 2010, 1217 (19), 3201-3216.
25. 台灣質譜學會, 質譜分析技術原理與應用. 全華圖書: 2016.
26. Chen, J.-L.; Nguan, H. S.; Hsu, P.-J.; Tsai, S.-T.; Liew, C. Y.; Kuo, J.-L.; Hu, W.-P.; Ni, C.-K., Collision-induced dissociation of sodiated glucose and identification of anomeric configuration. Physical Chemistry Chemical Physics 2017, 19 (23), 15454-15462.
27. Tsai, S. T.; Chen, J. L.; Ni, C. K., Does low‐energy collision‐induced dissociation of lithiated and sodiated carbohydrates always occur at anomeric carbon of the reducing end? Rapid Communications in Mass Spectrometry 2017, 31 (21), 1835-1844.
28. Domon, B.; Costello, C. E., A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate journal 1988, 5 (4), 397-409.
29. Ni, C.-K.; Hsu, H. C.; Liew, C. Y.; Huang, S.-P.; Tsai, S.-T., 1.13 - Modern Mass Spectrometry Techniques for Oligosaccharide Structure Determination: Logically Derived Sequence Tandem Mass Spectrometry for Automatic Oligosaccharide Structural Determination. In Comprehensive Glycoscience (Second Edition), Barchi, J. J., Ed. Elsevier: Oxford, 2021; pp 309-339.