簡易檢索 / 詳目顯示

研究生: 高麗婷
Gao, Li-Ting
論文名稱: 表面修飾不同形貌奈米銀應用於表面電漿共振有機氣體感測器之研究
A Study on VOC Sensor Utilizing Localized Surface Plasmon Resonance of Silver Nanoparticles with Different Morphologies and Surface Modification
指導教授: 呂家榮
Lu, Chia-Jung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 107
中文關鍵詞: 奈米銀石墨烯揮發性有機化合物局部表面電漿共振微小化感測器
英文關鍵詞: silver naonparticles, Graphene oxide, Volatile Organic Compounds, Localized Surface Plasmon Resonance, Microstructure sensor
DOI URL: http://doi.org/10.6345/NTNU201900173
論文種類: 學術論文
相關次數: 點閱:238下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗目的在觀察不同形貌之奈米銀粒子在感測揮發性有機氣體 VOC 時,對光學造成的影響。實驗上合成球型 ( Sphere )、三角板( Triangular silver nanoplates, TSNP ) 、立方體 ( Cubic ) 三種形狀之奈米銀,分別自組裝在玻璃感測器上,製作成微小化裝置,主要的吸收波峰位置從球型約 390 nm 位移至三角板 600 nm,立方體主要的波峰在 550 nm,並利用實驗室發展的氣體生成系統,比較三者間在光學上對校正曲線斜率的響應,根據電場分布的特性,證實了具有尖端結構的粒子擁有最好的感測能力。
    另外,將奈米銀自組裝感測器各別修飾上聚二甲基矽氧烷以及石墨烯 ( Graphene oxide, GO ) 薄膜,這時候奈米銀在相同的空間裡可感測到更多的氣體分子,因此能增強奈米銀局部表面電漿共振,提升感測器的靈敏度。然而,相較於聚合物,發現石墨烯更能有效提升奈米銀的靈敏度,這項研究為以奈米結構為基底的光學感測器提升了一個層次,butanol 感測可上升 3.28 倍,m-xylene 感測可上升 2.78 倍。

    The purpose of this study was to observe the optical effects of silver nanoparticles in different morphologies when sensing volatile organic gas VOCs. Experimentally, three types of silver nanoparticles which are Sphere, Triangular silver nanoplates ( TSNP ) and cubic, were self-assembled on the glass, respectively, and they were made into microstructures gas sensor. TSNP LSPR peak changed from 390nm that in sphere to 600nm. And cubic is 550nm. Combined with the gas generation system developed by the laboratory, the response of the three curves to the slope of the calibration curves were compared. According to the characteristics of the electric field distribution, it was confirmed that the particles with the tip structure have the highest sensing capability.
    In addition, as the sensor with silver nanoparticles self-assembly was modified with poly ( dimethylsiloxane ) and graphene oxide ( GO ) film. Therefore, silver nanoparticles can sense more gas molecules, so it can enhance the local surface plasma resonance ( LSPR ), and improve the sensitivity of the sensor.
    However, compared with polymers, we found that graphene oxide is better in enhancing the sensitivity of nano silver. This study has raised the level of optical sensors based on nanostructures. The sensing of butanol can be increased 3.28 times, m-xylene increased 2.78 times.

    摘 要 I ABSTRACT II 目 錄 III 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 銀奈米粒子合成 2 1.2.1 晶種成長法 3 1.2.2 多元醇法 5 1.2.3 水熱法 6 1.2.4 光合成法 8 1.3 奈米材料特性 11 1.3.1 小尺寸效應 11 1.3.2 量子尺寸效應 12 1.3.3 表面效應 13 1.3.4 Mie theory 14 1.3.5 漸逝波理論 16 1.4局部表面電漿共振 20 1.5 靜電導體特性 22 1.5.1尖端放電 22 1.5.2 石墨稀應用 25 第二章 實驗部分 27 2.1 藥品、實驗器材與儀器設備 27 2.1.1 實驗藥品 27 2.1.2 實驗器材 29 2.1.3 儀器設備 30 2.2 奈米粒子之合成 34 2.2.1 球型奈米銀合成 34 2.2.2 三角型奈米銀合成 36 2.2.3 方型奈米銀合成 38 2.2.4棒狀奈米銀合成 40 2.3奈米銀自組裝流程及表面修飾 43 2.3.1 玻璃基板的製備 43 2.3.2 玻璃修飾APTMS 43 2.3.3 玻璃修飾銀奈米粒子 43 2.3.4 奈米銀表面修飾DB-1薄膜 44 2.3.5 奈米銀表面修飾AGO薄膜 45 2.3.6 奈米銀表面修飾CTAB薄膜 45 2.4 感測系統 47 2.4.1 奈米薄膜感測系統之架設 47 2.4.2 光譜儀數據計算 50 2.4.3絕對差值總和法 51 第三章 結果與討論 55 3.1 奈米銀粒子之分析 55 3.1.1 球狀奈米銀 55 3.1.2 三角板奈米銀 59 3.1.3 方型奈米銀 66 3.1.4 棒狀奈米銀 69 3.2 不同奈米銀粒子修飾玻璃基板 71 3.2.1奈米銀自組裝於玻璃表面 71 3.2.2三角板奈米銀自組裝於玻璃表面 72 3.2.3立方奈米銀自組裝於玻璃表面 73 3.3 不同形狀奈米銀粒子感測器分析 74 3.3.1自組裝奈米銀感測器再現性測試 74 3.3.2自組裝奈米銀感測器對m-xylene訊號 75 3.3.3奈米銀感測器選擇性與靈敏度比較 81 3.4 複合材料影響 87 3.4.1聚二甲基矽氧烷DB-1 87 3.4.2石墨稀 90 3.5 界面活性劑對感測的影響 95 3.6 CTAB對三角板奈米銀粒子的影響 96 3.7 電漿清洗對三角板奈米銀粒子的影響 97 第四章 結論 99 參考文獻 100

    1. Kenny, T., CHAPTER 7 - Chemical Sensors. In Sensor Technology Handbook, Wilson, J. S., Ed. Newnes: Burlington, 2005; pp 181-191.
    2. Wohltjen, H.; Snow, A. W., Colloidal Metal−Insulator−Metal Ensemble Chemiresistor Sensor. Analytical Chemistry 1998, 70 (14), 2856-2859.
    3. Jin, Y.; Kang, X.; Song, Y.; Zhang, B.; Cheng, G.; Dong, S., Controlled Nucleation and Growth of Surface-Confined Gold Nanoparticles on a (3-aminopropyl)trimethoxysilane-Modified Glass Slide:  A Strategy for SPR Substrates. Analytical Chemistry 2001, 73 (13), 2843-2849.
    4. Zhang, Q.; Ge, J.; Pham, T.; Goebl, J.; Hu, Y.; Lu, Z.; Yin, Y., Reconstruction of silver nanoplates by UV irradiation: tailored optical properties and enhanced stability. Angewandte Chemie International Edition 2009, 48 (19), 3516-3519.
    5. Zeng, J.; Zheng, Y.; Rycenga, M.; Tao, J.; Li, Z.-Y.; Zhang, Q.; Zhu, Y.; Xia, Y., Controlling the shapes of silver nanocrystals with different capping agents. Journal of the American Chemical Society 2010, 132 (25), 8552-8553.
    6. Sun, Y.; Xia, Y., Triangular nanoplates of silver: synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold. Advanced Materials 2003, 15 (9), 695-699.
    7. Gao, C.; Lu, Z.; Liu, Y.; Zhang, Q.; Chi, M.; Cheng, Q.; Yin, Y., Highly stable silver nanoplates for surface plasmon resonance biosensing. Angewandte Chemie International Edition 2012, 51 (23), 5629-5633.
    8. Jana, N. R.; Gearheart, L.; Murphy, C. J., Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratioElectronic supplementary information (ESI) available: UV–VIS spectra of silver nanorods. See http://www. rsc. org/suppdata/cc/b1/b100521i. Chemical Communications 2001, (7), 617-618.
    9. Murphy, C. J.; Jana, N. R., Controlling the aspect ratio of inorganic nanorods and nanowires. Advanced Materials 2002, 14 (1), 80-82.
    10. Guidez, E. B.; Aikens, C. M., Diameter dependence of the excitation spectra of silver and gold nanorods. The Journal of Physical Chemistry C 2013, 117 (23), 12325-12336.
    11. Mahmoud, M. A.; El-Sayed, M. A., Different plasmon sensing behavior of silver and gold nanorods. The journal of physical chemistry letters 2013, 4 (9), 1541-1545.
    12. Ratheesh, K.; Prabhathan, P.; Seah, L.; Murukeshan, V., Gold nanorods with higher aspect ratio as potential contrast agent in optical coherence tomography and for photothermal applications around 1300 nm imaging window. Biomedical Physics & Engineering Express 2016, 2 (5), 055005.
    13. Rekha, C. R.; Nayar, V. U.; Gopchandran, K. G., Synthesis of highly stable silver nanorods and their application as SERS substrates. Journal of Science: Advanced Materials and Devices 2018, 3 (2), 196-205.
    14. Wiley, B.; Herricks, T.; Sun, Y.; Xia, Y., Polyol Synthesis of Silver Nanoparticles:  Use of Chloride and Oxygen to Promote the Formation of Single-Crystal, Truncated Cubes and Tetrahedrons. Nano Letters 2004, 4 (9), 1733-1739.
    15. Lofton, C.; Sigmund, W., Mechanisms controlling crystal habits of gold and silver colloids. Advanced Functional Materials 2005, 15 (7), 1197-1208.
    16. Skrabalak, S. E.; Wiley, B. J.; Kim, M.; Formo, E. V.; Xia, Y., On the Polyol Synthesis of Silver Nanostructures: Glycolaldehyde as a Reducing Agent. Nano Letters 2008, 8 (7), 2077-2081.
    17. Chen, Z.; Balankura, T.; Fichthorn, K. A.; Rioux, R. M., Revisiting the Polyol Synthesis of Silver Nanostructures: Role of Chloride in Nanocube Formation. ACS Nano 2019, 13 (2), 1849-1860.
    18. Wang, Z.; Liu, J.; Chen, X.; Wan, J.; Qian, Y., A Simple Hydrothermal Route to Large‐Scale Synthesis of Uniform Silver Nanowires. Chemistry–A European Journal 2005, 11 (1), 160-163.
    19. Yang, Y.; Matsubara, S.; Xiong, L.; Hayakawa, T.; Nogami, M., Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. The Journal of Physical Chemistry C 2007, 111 (26), 9095-9104.
    20. Yu, D.; Yam, V. W.-W., Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction. The Journal of Physical Chemistry B 2005, 109 (12), 5497-5503.
    21. Yu, D.; Yam, V. W.-W., Controlled synthesis of monodisperse silver nanocubes in water. Journal of the American Chemical Society 2004, 126 (41), 13200-13201.
    22. Jin, R.; Cao, Y. C.; Hao, E.; Métraux, G. S.; Schatz, G. C.; Mirkin, C. A., Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 2003, 425 (6957), 487.
    23. Murshid, N.; Keogh, D.; Kitaev, V., Optimized Synthetic Protocols for Preparation of Versatile Plasmonic Platform Based on Silver Nanoparticles with Pentagonal Symmetries. Particle & Particle Systems Characterization 2014, 31 (2), 178-189.
    24. Wiegel, E., The mechanism of the catalytic decomposition of hydrogen peroxide on colloid silver. ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-ABTEILUNG A-CHEMISCHE THERMODYNAMIK KINETIK ELEKTROCHEMIE EIGENSCHAFTSLEHRE 1929, 143 (2), 81-93.
    25. Parnklang, T.; Lertvachirapaiboon, C.; Pienpinijtham, P.; Wongravee, K.; Thammacharoen, C.; Ekgasit, S., H 2 O 2-triggered shape transformation of silver nanospheres to nanoprisms with controllable longitudinal LSPR wavelengths. Rsc Advances 2013, 3 (31), 12886-12894.
    26. Tsuji, M.; Gomi, S.; Maeda, Y.; Matsunaga, M.; Hikino, S.; Uto, K.; Tsuji, T.; Kawazumi, H., Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H2O2. Langmuir 2012, 28 (24), 8845-8861.
    27. 李言榮, 惲., 材料物理學概論. 2003.
    28. 馬振基, 奈米材料科技原理與應用. 2005.
    29. Kubo, R., Electronic Properties of Metallic Fine Particles. I. Journal of the Physical Society of Japan 1962, 17 (6), 975-986.
    30. 陳昱銓. 奈米銀光學感測器之表面修飾與氣體選擇性研究暨微機電-氣體樣品前濃縮裝置之自動化系統建立. 輔仁大學, 新北市, 2008.
    31. Pollack, H. W., Materials science and metallurgy, 4th Edition, Englewood Cliffs N. J. Prentice-Hall. 1988.
    32. Mie, G., Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik 1908, 330 (3), 377-445.
    33. Willets, K. A.; Van Duyne, R. P., Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry 2007, 58 (1), 267-297.
    34. 江海邦, 北北區光電暨影像顯示科技人培計畫—中等教師研習營隊
    光電之應用
    35. Ritchie, R. H., Plasma Losses by Fast Electrons in Thin Films. Physical Review 1957, 106 (5), 874-881.
    36. Willets, K. A.; Duyne, R. P. V., Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry 2007, 58 (1), 267-297.
    37. Han, Z.; Bozhevolnyi, S. I., Chapter 5 - Waveguiding with Surface Plasmon Polaritons. In Handbook of Surface Science, Richardson, N. V.; Holloway, S., Eds. North-Holland: 2014; Vol. 4, pp 137-187.
    38. Raether, H., Surface plasmons on smooth and rough surfaces and on gratings. Springer: 1988; p 91-116.
    39. Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. P.; Zou, S., Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS bulletin 2005, 30 (5), 368-375.
    40. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. ACS Publications: 2003.
    41. Malinsky, M. D.; Kelly, K. L.; Schatz, G. C.; Van Duyne, R. P., Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. Journal of the American Chemical Society 2001, 123 (7), 1471-1482.
    42. Underwood, S.; Mulvaney, P., Effect of the solution refractive index on the color of gold colloids. Langmuir 1994, 10 (10), 3427-3430.
    43. Brockman, J. M.; Nelson, B. P.; Corn, R. M., Surface plasmon resonance imaging measurements of ultrathin organic films. Annual review of physical chemistry 2000, 51 (1), 41-63.
    44. Haes, A. J.; Van Duyne, R. P. In Nanoscale optical biosensors based on localized surface plasmon resonance spectroscopy, Plasmonics: Metallic Nanostructures and Their Optical Properties, International Society for Optics and Photonics: 2003; pp 47-59.
    45. Jain, P. K.; El-Sayed, M. A., Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing. Nano Letters 2008, 8 (12), 4347-4352.
    46. Carlsson, C. M. G.; Johansson, K. S., Surface modification of plastics by plasma treatment and plasma polymerization and its effect on adhesion. Surface and Interface Analysis 1993, 20 (5), 441-448.
    47. Akjouj, A.; Mir, A., Effect of graphene layer on the localized surface plasmon resonance (LSPR) and the sensitivity in periodic nanostructure. Photonics and Nanostructures-Fundamentals and Applications 2018, 31, 107-114.
    48. Johansson, K. S., Surface Modification of Plastics. Applied Plastics Engineering Handbook (Second Edition) 2017.
    49. Geim, A. K.; Novoselov, K. S., The rise of graphene. 2007, (1476-1122 (Print)).
    50. Allen, M. J.; Tung Vc Fau - Kaner, R. B.; Kaner, R. B., Honeycomb carbon: a review of graphene. 2010, (1520-6890 (Electronic)).
    51. Bai, S.; Shen, X., Graphene–inorganic nanocomposites. RSC Advances 2012, 2 (1), 64-98.
    52. Yin, P. T.; Shah, S.; Chhowalla, M.; Lee, K. B., Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications. 2015, (1520-6890 (Electronic)).
    53. Ghosh, A.; Subrahmanyam, K. S.; Krishna, K. S.; Datta, S.; Govindaraj, A.; Pati, S. K.; Rao, C. N. R., Uptake of H2 and CO2 by Graphene. The Journal of Physical Chemistry C 2008, 112 (40), 15704-15707.
    54. Yin, P. T.; Kim, T.-H.; Choi, J.-W.; Lee, K.-B., Prospects for graphene–nanoparticle-based hybrid sensors. Physical Chemistry Chemical Physics 2013, 15 (31), 12785-12799.
    55. Piszter, G.; Kertész, K.; Molnár, G.; Pálinkás, A.; Deák, A.; Osváth, Z., Vapour sensing properties of graphene-covered gold nanoparticles. Nanoscale Advances 2019.
    56. Ocean Optics, I. DH-2000 Family. https://oceanoptics.com/product/dh-2000-family.
    57. Ocean Optics, I. Maya 2000 Pro. https://oceanoptics.com/product/maya2000-pro-custom/.
    58. 艾瑪特有限公司 無油式空氣壓縮機. http://www.airmart.com.tw/tw_product_detail.asp?Fkindno=F000002&Skindno=S000002&Pidno=201707210013.
    59. Corporation, P. I. MFC readout power supply. http://she.mcut.edu.tw/p/412-1044-2113.php?Lang=zh-tw.
    60. Company, F. E. a. I. FE-SEM http://www.che.ntu.edu.tw/ntuche/p_equip_booking/files/Intro_SEM_150331.pdf.
    61. Chen, S.; Carroll, D. L., Synthesis and Characterization of Truncated Triangular Silver Nanoplates. Nano Letters 2002, 2 (9), 1003-1007.

    下載圖示
    QR CODE