研究生: |
劉榮德 |
---|---|
論文名稱: |
微機電LIGA製程之銅合金電鑄技術開發 Development of electroformed copper alloys for LIGA process application |
指導教授: |
李基常
Lee, Ji-Charng 田振榮 Tien, Chen-Jung |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 銅製程 、微機電 、LIGA製程 、哈爾氏槽 |
英文關鍵詞: | Copper damascene process, MEMS, LIGA process, Hull cell |
論文種類: | 學術論文 |
相關次數: | 點閱:254 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
由於半導體銅鑲嵌製程的發展,且銅因具有高導電、高導熱等優點,故本研究以低成本之直流電鍍技術來沉積銅合金,並應用於微機電LIGA製程中微結構之製作。
本研究探討了銅鉬、銅鈷及銅鎳三種合金。實驗首先藉由哈爾氏槽試驗來測試鍍液與添加劑對鍍層的影響,再挑選較合適的鍍液組成進行不同電流密度之銅合金電鍍。研究中採用不同的錯合劑、電流密度、鍍液成分、鍍液濃度及沉積時間來進行銅合金電鍍,再經由SEM、EDS、Alpha-Step及ESCA等設備觀察量測鍍層之表面形貌、金屬沉積比率、粗糙度及厚度等特性。最後,從三種銅合金中選定較佳的鍍層與電鍍參數,經微影及電鑄等步驟完成以LIGA製程製作微結構之應用。
由實驗結果可知:(1)以焦磷酸銅鍍液進行銅鉬合金電鍍時,在電流密度2~5 ASD下具有銅鉬合金沉積,但鉬的含量僅2~3 at%。此外,因合金中有大量的氧原子沉積,造成鍍層出現嚴重的裂痕。(2)銅鈷合金可藉由添加檸檬酸鈉於硫酸銅鍍液中被沉積出,鍍層中鈷離子沉積量會隨著電流密度、鍍液中鈷離子濃度及檸檬酸鈉濃度的增加而增加,但會隨著沉積厚度的增加而逐漸減少,造成此現象的原因可能是鍍層中鈷原子易遭銅離子置換所造成。(3)銅鈷合金中,鍍層在電流密度4~5 ASD時,鈷離子含量可達50~60 at%。若鍍浴中加入銅光澤劑時,在電流密度6 ASD以上可沉積出具金屬光澤之銅鈷鍍層,但因過多的氫氣泡阻礙鍍層的沉積,導致坑洞的產生及電沉積效率的降低。(4)硫酸銅鍍液中添加檸檬酸鈉可沉積出銅鎳合金,但所沉積出之鍍層色澤偏暗且具粉末狀顆粒。光澤劑的添加,於電流密度2~3 ASD時,可得金屬光澤之銅鎳合金。(5)經微影及電鑄過程後,5 m厚之銅鎳合金微結構可被製作,但所沉積的結構有應力、粗糙度及厚度等問題,仍有待進一步探討。
Abstract
Because of the development of copper damascene process and the good physical properties of copper, DC electroplating was used to deposit the copper alloys which applied to fabricate microstructures in LIGA process.
Three copper alloys, including Cu-Mo, Cu-Co and Cu-Ni, were discussed in the thesis. In the investigation, Hull cell was used to observe the effect of electroplating bath and additives. Better electroplating parameters were chosen to deposit copper alloys under different current density. Various deposited films were obtained by changing different kinds of complexings, current density, deposition time, constituent, and the concentration of bath. The surface morphology of film was observed by SEM. The atomic percent of alloy in film was determined by EDS. The roughness and the thickness were calculated by Alpha-Step 500. The depth profiling was determined by ESCA. Finally, better electroplating parameters were chosen for LIGA process application.
From the experimental results: (1) Cu-Mo alloy could be deposited from the copper pyrophosphate bath, and the atomic percent of Mo in film is 2~3 % between current density 2 to 5 ASD. Serious cracks appeared in the films due to lots of deposited oxygen atoms. Therefore, Cu-Mo alloy was unsuitable to be deposited by electroplating. (2) Cu-Co alloy could be deposited from the acid copper bath by adding sodium citric. The atomic percent of Co in film increases with the increase of the current density, sodium citric and the concentration of Co in bath, but decreases with the increase of thickness. This is because Co in film was easily replaced by Cu in the duration of deposited process. (3) The atomic percent of Co in film was 50~60 % between current density 4 to 5 ASD. Metal luster of Cu-Co region was obtained above current density 6 ASD by adding brightener into the bath, but too many hydrogen bubbles appeared, which resulted in low current efficient and rough surface. (4) Cu-Ni alloy could be deposited form acid copper bath by adding sodium citric, but the deposited film was dull and granular. Bright film of Cu-Ni alloy was obtained between current density 2 to 3 ASD by adding brightener into the bath. (5) The microstructures of Cu-Ni alloy, which was 5 m thick, were fabricated after lithography and electroforming, but the roughness, stress and thickness of film have to be improved in further investigations.
參考文獻
1. 楊啟榮 等人, “微機電系統技術與應用”, 精密儀器發展中心,第四章,pp.142 (2003).
2. The technical Report of Institut für Mikrotechnik Mainz (IMM), Mainz Germany.
3. A. Maner, S. Harsh and W. Ehrfeld, “Mass production of microdevices with extreme aspect ratio by electroforming”, Plating and Surface Finishing, Vol. 75, No. 3, pp. 60–65 (1988).
4. W. Ehrfeld, W. Glashauser, D. Münchmeyer and W. Schelb, “Mask making for synchrotron radiation lithography”, Microelectronic Engineering, Vol. 5, pp. 463-470 (1986).
5. 楊啟榮, “微系統類LIGA製程光刻技術”, 科儀新知, Vol. 22, No. 4, pp. 33-45 (2001).
6. H. Miyajima and M. Mehregany, “High-aspect-ratio photolithography for MEMS applications”, J. Microelectromechanical Systems, Vol. 4, No. 4, pp. 220-229 (1995).
7. G. Engelmann, O. Ehrmann and J. Simon, “Fabrication of high depth-to-width aspect ratio microstructures”, Proc. of Micro Electro Mechanical Systems Workshop, Trävemunde, Germany, pp. 93-98 (1992).
8. R. A. Lawes, A. S. Holmes and F. N. Goodall, “The formation of moulds for 3D microstructures using excimer laser ablation”, Microsystem technologies, Vol.3, No.17, pp. 17-19 (1996).
9. C. R. Yang, C. S. Chou, H. Y. Chou, H. S. Lin, W. K. Kuo, G. S. Luo and J. W. Chang, “PMMA microstructure as KrF excimer-laser LIGA material”, Proc. of SPIE, Vol. 3511, pp. 342-348 (1998).
10. C. R. Yang et al., Proc. of the 15th CSME Conference, 7(1998).
11. E. C. Harvey, P. T. Rumsby, M. C. Gower and J. L. Remnant, “Microstructuring by excimer laser”, Proc. of SPIE, Vol. 2639, pp. 266-277 (1995).
12. N. C. MacDonald, “SCREAM microelectromechanical systems”, Micro- elecronic Engineering, Vol. 32, pp. 49-73 (1996).
13. N. Rajan, M. Mehreqany, C. A. Zorman, S. Stefanescu and T. P. Kicher, “Fabrication and testing of micromachined silicon carbide and nickelfuel atomizers for gas turbine engines”, J. Microelectro- mechanical Systems, Vol. 8, No. 3, pp. 251-257 (1999).
14. F. Läermer and A. Schilp, German Patent No. DE4241045.
15. C. K. Chung, H. C. Liu and T. H. Jaw, “High aspect ratio silicon trench fabrication by inductively coupled plasma”, HARMST99, pp. 22-23 (1999).
16. Holmes, Microsystems Technology, LIGA and Related Processes, Short course text at Imperial College UK (1997).
17. 楊啟榮, “微機電系統技術導論”,國立台灣師範大學上課講義(2001).
18. W. Ehrfeld, V. Hessel, H. Löwe, C. Schulz, L. Weber, “Materials of LIGA technology”, Microsystem Technologies, Vol. 5, No. 3, pp. 105-112 (1999).
19. 屠振密, “電鍍合金原理與工藝”, 國防工業出版社, 第一章, pp. 1-11
20. Y. Hiraoka and M. Ogasa, “Weldability of powder metallurgy molybdenum with low oxygen content”, Zeitschrift Fuer Matalkunde, Vol.78, No.3, pp.197-200 (1987).
21. T. B. Massalski, “Binary alloy phase diagrams” 2nded, Materials Park, OH, ASM International (1990).
22. A. G. Kostornov and V. P. Semenets, “Features of formation of interparticle contacts in sintering of porous molybdenum-copper composites”, Powder Metallurgy and Metal Ceramics, Vol. 29, No.3, pp.193-196 (1990).
23. M. Osada, A. Ohtsuka, N. Ogasa and Y. Amano, “Substrate for semiconductor apparatus having a composite material”, US Patent, 5086333 (1992).
24. R. M. German, “A model for the thermal properties of liquid-phase sintered composites”, Physical Metallurgy and Materials Science, Vol. 24, No. 8, pp.1745-1752. (1993).
25. P. Yih and D. D. L. Chung, “A comparative study of the coated filler method and the admixture method of powder metallurgy for making metal-matrix composites”, Journal of Materials Science, Vol. 32, pp.2873-2882. (1997).
26. O. A. Fregoso, S. López, J. A. Juárez-Islas, M. García, E. Martínez, M.A. Alvarez-Pérez, J.Ch. Ramírez, S. Granados et al., “Cu/Mo nanostructured alloy thin films”, Phys. Stat. Sol. B, Vol. 220(1), pp. 575-582 (2000).
27. M. P. Zach, K. Inazu, K. H. Ng, J. C. Hemminger and R. M. Penner, “Synthesis of molybdenum nanowires with millimeter-scale lengths using electrochemical step edge decoration”, Chem. Mater., Vol. 14, pp.3206-3216 (2002).
28. K. M. Yousif, “Modification of the electrodeposition method of molybdenum black coatings for solar energy applications”, Metal Finishing, Vol. 93, No. 6 pp.90-94 (1995).
29. K. M. Yousif, B. E. Smith and C. Jeynes, “Investigation of microstructure of molybdenum- copper black electrodeposited coatings with reference to solar selectivity”, Journal of Materials Science, Vol. 31, No. 1, pp.185-191 (1996).
30. F. Jahan and B. E. Smith, “Characterization of molybdenum black coatings on zinc substrates”, Journal of Materials Science, Vol. 32, No. 14, pp.3869-3874 (1997).
31. E. B. Lehman and E. Chassaing, “Electrochemical investigation of the Ni-Cu-Mo electrodeposition system”, Journal of applied electrochemistry Vol. 27, No. 5, pp.568-572 (1997).
32. M. N. Baibich, J. M. Broto, A. Fert and F. Petroff et al., “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices”, Phys. Rev. Lett., Vol. 61, pp. 2472-2475 ( 1988 ).
33. E. Chassaing, A. Morrone and J. E. Schmidt, “Nanometric Cu-Co multilayers electrodeposited on indium-tin oxide glass”, Journal of the Electrochemical Society, Vol. 146, No. 5, pp. 1794-1797 (1999).
34. T. Ohgai, X. HOffer, A. Fábián, L. Gravier and J. Ansermet, “Electrochemical synthesis and magnetoresistance properties of Ni, Co and Co/Cu nanowires in a nanoporous anodic oxide layer on metallic aluminum”, J. Mater. Chem., Vol. 13, pp. 2530-2534 (2003).
35. K. Yamamoto and M. Kitada, “Microstructure and magnetoresistance in Cu-Co alloy thin films”, Thin Solid Films, Vol. 263, pp. 111-116 (1995).
36. H. Zaman, A. Yamada, H. FuKuda and Y. Ueda, “Magnetoresistance effect in Co-Ag and Co-Cu alloy films prepared by electrodeposition”, J. Electrochem. Soc., Vol. 145, No. 2, pp. 565-568 (1998).
37. R López, J. Herreros, A. García-Arribas, J. M. Barandiarán and M. L. Fdez-Gubieda, “Magnetic study of electrodeposited Cu-Co heterogeneous alloys”, Journal of Magnetism and Magnetic Materials, Vol. 196, pp. 53-55 (1999).
38. R. L. Antón, M. L. Fdez-Gubieda, M. Insausti, A. Garca-Arribas and J. Herreros, ”Influence of the preparation method on the properties of Cu-Co heterogeneous alloys”, Journal of Non-Crystalline Solids, Vol. 287, No. 1, pp. 26-30 (2001).
39. R. L. Antón, M. L. Fdez-Gubieda, A. Garca-Arribas, J. Herreros and M. Insausti, “Preparation and characterisation of Cu-Co heterogeneous alloys by potentiostatic electrodeposition”, Materials Science and Engineering, Vol. 335, No. 1, pp. 94-100 (2002).
40. G. R. Pattanaik, S. C. Kashyap and D. K. Pandya, “Structure and giant magnetoresistance in electrodeposited granular Cu-Co films”, Journal of Magnetism and Magnetic Materials, Vol. 219, No. 3, pp. 309-316 (2000).
41. G. R. Pattanaik, D. K. Pandya and S. C. Kashyap, “Giant magneto- resistance and magnetic properties of electrodeposited Cu-Co granular films’, Journal of alloys and Compounds, Vol. 326, No. 1, pp. 260-264 (2001).
42. G. R. Pattanaik, D. K. Pandya and S. C. Kashyap, “Giant magneto- resistance in Cu-Co films electrodeposited on n-Si”, Journal of Magnetism and Magnetic Materials, Vol. 234, No. 2, pp. 294-298 (2001).
43. G. R. Pattanaik, D. K. Pandya and S. C. Kashyap, “Effect of process parameters on GMR in electrodeposited Cu-Co nanogranular thin films”, The Solid films, Vol. 433, No. 1, pp. 247-251 (2003).
44. Ö. F. Bakkaloglu and I. H. Karahan, “Magnetoresistance measurements on electrodeposited CxCu1-x alloy films”, Turk J Phy., Vol. 25, pp. 27-33 (2001).
45. A. E. Mohamed, S.M. Rashwan, ,S.M. Abdel-Wahaab and M.M. Kamel, “Electrodeposition of Co-Cu alloy coatings from glycinate baths”, Journal of Applied Electrochemistry, Vol. 33, No. 11, pp. 1085-1092 (2003).
46. E. Gómez, A. Llorente, X. Alcobe and E. Vallés, “Electrodeposition for obtaining homogeneous or heterogeneous cobalt-copper films”, Journal of Solid State Electrochemistry, Vol. 8, No. 2, pp. 82-88 (2004).
47. V. I. Kharlamov, S. S. Kruglikov, N. S. Grigoryan and T. A. Vagramyan, “Microdistributions of electrolytic alloys and their components” Russian Journal of Electrochemistry, Vol. 37, No. 7, pp. 661-669 (2001).
48. D. S. Leem, J. O. Song, J. S. Kwak, Y. Park, and T. Y. Seong, “High-quality Cu-Ni solid solution/Ag ohmic contacts for flip-chip light-emitting diodes”, Electrochemical and Solid State Letters, Vol. 7, No. 10, pp. G210-G212 (2004).
49. W. A. Badawy, K. M. Ismail and A. M. Fathi, “Environmentally safe corrosion inhibition of the Cu–Ni alloys in acidic sulfate solutions”, Journal of Applied Electrochemistry, Vol. 35, No. 9, pp. 879-888 (2005).
50. 黃振賢, “機械材料” ,京文圖書,第六版, pp. 337-339.
51. I. Mizushima, M. Chikazawa, and T. Watanabe et al., “Microstructure of electrodeposited Cu-Ni binary alloy films”, J. Electrochem. Soc., Vol. 143, No. 6, pp.1978-1983 (1996).
52. M. H. Fawzy, M. M. Ashour, M. A. El-Halim, “Effect of some operating variables on the characteristics of electrodeposited Cu-Ni alloys with and without α-Al2O3 and TiO2 inert particles”, J. Chem. Tech. Biotechnol, Vol. 66, pp. 121-130 (1996).
53. M. L. Sartorelli, A. Q. Schervenski, R. G. Delatorre, P. Klauss, A. M. Maliska and A. A. Pasa, “Cu-Ni thin films electrodeposited on Si: composition and current efficiency”, Physica Status Solidi (A), Vol. 187, No. 1, pp. 91-95 (2001).
54. R.G. Delatorre, M. L. Sartorelli, A. Q. Schervenski, A. A. Pasa and S. Güths, “Thermoelectric properties of electrodeposited CuNi alloys on Si”, Journal of applied physics, Vol. 93, pp. 6154-6158 (2003).
55. C. L. Aravinda, S. M. Mayanna, P. Bera, V. Jayaram and A. K. Sharma, “XPS and XAES investigations of electrochemically deposited Cu-Ni solar selected black coatings on molybdenum substrate”, Journal of Materials Science Letters, Vol. 21, No. 3, pp. 205-208 (2002).
56. K. Hong, J. K. Kim , S. K. Lee, S. Park, B. Gyun, Y. D. Ko, N. J. Jeon and J. S. Chung, “Effects of organic additives on magnetoresistance of electrodeposited Ni-Cu thin films”, Phys. Stat. Sol. (B), Vol. 241, No. 7, pp. 1681-1685 (2004).
57. 友野理平、青谷薰、今井雄一及川合慧, “實用電鍍技術全集”, 復漢出版社, pp. 157, 166 (1983).
58. L. E. olds and G. W. Rengstorff, “Effects of oxygen, nitrogen, and carbon on ductility of cast molybdenum”, Journal of Metals, Vol. 8, No. 2, pp.150-155 (1956).
59. M. Kitajima, T. Noda and M. Okada, “SIMS analysis of oxygen on brittle fracture surface of molybdenum”, Journal of Materials Science Letters, Vol. 1, No. 5, pp. 223-226 (1982).
60. Y. Hiraoka and M. Okada, “Weldability of powder-metallurgy molybdenum with low oxygen content”, Zeitschrift Metallkunde, Vol.78, No. 3, pp. 197-200 (1987).
61. E. Fromm and H. Jehn, “Thermodynamics and phase relations in refractory metal solid solutions containing carbon, nitrogen, and oxygen”, Metallurgical Transactions, Vol. 3, pp. 1685-1692 (1972).
62. A. Kumar and B. L. Eyre, “Grain boundary segregation and intergranular fracture in molybdenum”, Proc. of the Royal Society of London, Vol. 370, No. 1743, pp. 431-458 (1980).
63. M. Shima, L. Salamanca-Riba, T. P. Moffat and R. D. McMichael, “Structural and magnetic properties of electrodeposited Co/Cu multilayers”, Journal of Magnetism and Magnetic Materials, Vol.198, pp. 52-54 (1999).
64. J. J. Kelly, M. Cantoni and D. Landolt, “Three-dimensional structuring of electrodeposited Cu-Co multilayer alloys”, Journal of the Electrochemical Society, Vol. 148, No. 9, pp. C620-C626 (2001).
65. Y. Hayashi, C. G. Lee, B. H. Koo, T. Sato, M. Arita and M. Masuda, “Growth of Co/Cu multilayered thin films by electro- deposition”, Phys. Stat. Sol. (A), Vol. 201, No. 8, pp. 1658-1661 (2004).
66. Q. Liu, J. H. Min, J. U. Cho, and Y. K. Kim , “The pH dependence of Co-Cu alloy thin films fabricated on amorphous substrate by DC electrodeposition”, Transactions on Magnetics, Vol. 41, No. 2, pp. 930-932 (2005).