簡易檢索 / 詳目顯示

研究生: 劉榮德
論文名稱: 微機電LIGA製程之銅合金電鑄技術開發
Development of electroformed copper alloys for LIGA process application
指導教授: 李基常
Lee, Ji-Charng
田振榮
Tien, Chen-Jung
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 102
中文關鍵詞: 銅製程微機電LIGA製程哈爾氏槽
英文關鍵詞: Copper damascene process, MEMS, LIGA process, Hull cell
論文種類: 學術論文
相關次數: 點閱:180下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    由於半導體銅鑲嵌製程的發展,且銅因具有高導電、高導熱等優點,故本研究以低成本之直流電鍍技術來沉積銅合金,並應用於微機電LIGA製程中微結構之製作。
    本研究探討了銅鉬、銅鈷及銅鎳三種合金。實驗首先藉由哈爾氏槽試驗來測試鍍液與添加劑對鍍層的影響,再挑選較合適的鍍液組成進行不同電流密度之銅合金電鍍。研究中採用不同的錯合劑、電流密度、鍍液成分、鍍液濃度及沉積時間來進行銅合金電鍍,再經由SEM、EDS、Alpha-Step及ESCA等設備觀察量測鍍層之表面形貌、金屬沉積比率、粗糙度及厚度等特性。最後,從三種銅合金中選定較佳的鍍層與電鍍參數,經微影及電鑄等步驟完成以LIGA製程製作微結構之應用。
    由實驗結果可知:(1)以焦磷酸銅鍍液進行銅鉬合金電鍍時,在電流密度2~5 ASD下具有銅鉬合金沉積,但鉬的含量僅2~3 at%。此外,因合金中有大量的氧原子沉積,造成鍍層出現嚴重的裂痕。(2)銅鈷合金可藉由添加檸檬酸鈉於硫酸銅鍍液中被沉積出,鍍層中鈷離子沉積量會隨著電流密度、鍍液中鈷離子濃度及檸檬酸鈉濃度的增加而增加,但會隨著沉積厚度的增加而逐漸減少,造成此現象的原因可能是鍍層中鈷原子易遭銅離子置換所造成。(3)銅鈷合金中,鍍層在電流密度4~5 ASD時,鈷離子含量可達50~60 at%。若鍍浴中加入銅光澤劑時,在電流密度6 ASD以上可沉積出具金屬光澤之銅鈷鍍層,但因過多的氫氣泡阻礙鍍層的沉積,導致坑洞的產生及電沉積效率的降低。(4)硫酸銅鍍液中添加檸檬酸鈉可沉積出銅鎳合金,但所沉積出之鍍層色澤偏暗且具粉末狀顆粒。光澤劑的添加,於電流密度2~3 ASD時,可得金屬光澤之銅鎳合金。(5)經微影及電鑄過程後,5 m厚之銅鎳合金微結構可被製作,但所沉積的結構有應力、粗糙度及厚度等問題,仍有待進一步探討。

    Abstract
    Because of the development of copper damascene process and the good physical properties of copper, DC electroplating was used to deposit the copper alloys which applied to fabricate microstructures in LIGA process.
    Three copper alloys, including Cu-Mo, Cu-Co and Cu-Ni, were discussed in the thesis. In the investigation, Hull cell was used to observe the effect of electroplating bath and additives. Better electroplating parameters were chosen to deposit copper alloys under different current density. Various deposited films were obtained by changing different kinds of complexings, current density, deposition time, constituent, and the concentration of bath. The surface morphology of film was observed by SEM. The atomic percent of alloy in film was determined by EDS. The roughness and the thickness were calculated by Alpha-Step 500. The depth profiling was determined by ESCA. Finally, better electroplating parameters were chosen for LIGA process application.
    From the experimental results: (1) Cu-Mo alloy could be deposited from the copper pyrophosphate bath, and the atomic percent of Mo in film is 2~3 % between current density 2 to 5 ASD. Serious cracks appeared in the films due to lots of deposited oxygen atoms. Therefore, Cu-Mo alloy was unsuitable to be deposited by electroplating. (2) Cu-Co alloy could be deposited from the acid copper bath by adding sodium citric. The atomic percent of Co in film increases with the increase of the current density, sodium citric and the concentration of Co in bath, but decreases with the increase of thickness. This is because Co in film was easily replaced by Cu in the duration of deposited process. (3) The atomic percent of Co in film was 50~60 % between current density 4 to 5 ASD. Metal luster of Cu-Co region was obtained above current density 6 ASD by adding brightener into the bath, but too many hydrogen bubbles appeared, which resulted in low current efficient and rough surface. (4) Cu-Ni alloy could be deposited form acid copper bath by adding sodium citric, but the deposited film was dull and granular. Bright film of Cu-Ni alloy was obtained between current density 2 to 3 ASD by adding brightener into the bath. (5) The microstructures of Cu-Ni alloy, which was 5 m thick, were fabricated after lithography and electroforming, but the roughness, stress and thickness of film have to be improved in further investigations.

    摘 要 Ⅰ 總目錄 Ⅳ 表目錄 Ⅶ 圖目錄 Ⅷ 第一章 緒論 1 1.1 前言 1 1.2 微機械技術簡介 1 1.2.1 矽基微細加工 1 1.2.2 非矽基微細加工 2 1.3 微機電技術的發展 5 1.4 研究動機與目的 6 1.5 論文架構 7 第二章 背景介紹與文獻回顧 11 2.1 電沉積的基本原理 11 2.2 影響合金電鍍之參數 14 2.3 電鍍與電鑄技術的異同 15 2.4 電鍍合金的特點 16 2.5 銅合金的簡介 16 2.5.1 銅鉬合金文獻回顧 18 2.5.2 銅鈷合金文獻回顧 20 2.5.3 銅鎳合金文獻回顧 23 第三章 實驗設計與流程 35 3.1 實驗規劃 35 3.2 銅合金之電鍍 35 3.2.1 哈爾氏槽試驗 35 3.2.2 小型電鍍槽電鍍試驗 37 3.3 鍍層成分分析與量測 37 3.3.1 掃瞄式電子顯微鏡 38 3.3.2 能量分散式光譜分析儀 38 3.3.3 表面粗糙度量測 38 3.3.4 縱深分析 39 3.4 LIGA製程 39 3.4.1 微影製程 39 3.4.2 合金電鑄 40 第四章 實驗結果與討論 45 4.1 電沉積銅鉬合金 45 4.1.1硫酸銅鍍液沉積銅鉬合金 45 4.1.2焦磷酸銅鍍液沉積銅鉬合金 46 4.1.3氯化銨鍍液沉積鉬鍍層 47 4.1.4討論 47 4.2 電沉積銅鈷合金 55 4.2.1焦磷酸銅鍍液沉積銅鈷合金 55 4.2.2硫酸銅鍍液沉積銅鈷合金 56 4.2.3討論 61 4.3 電沉積銅鎳合金 80 4.3.1硫酸銅鍍液沉積銅鎳合金 80 4.3.2討論 82 4.4銅合金應用於LIGA技術之電鑄製程 83 第五章 結論與未來展望 94 5.1 結論 94 5.2 未來展望 96 參考文獻 97 表 目 錄 表 1-1 微機電領域中微製造技術分類表 8 表 1-2 各種光刻技術之比較 10 表 1-3 用於電鑄微結構之金屬材料 10 表 2-1 銅的物理特性 25 表 2-2 鉬的物理特性 25 表 2-3 合金在不同銅鉬比率下之熱膨脹及熱傳導係數 27 表 2-4 各種複合材料的熱傳導係數、熱膨脹系數、彈性模數等實際量測值 28 表 2-5 鈷的物理特性 31 表 2-6 鎳的物理特性 32 表 3-1 電沉積製程與微影製程中所使用的化學試劑 43 表 4-1 EDS分析所得到鍍層中元素所占比例 53 表 4-2 銅鉬、銅鈷與銅鎳合金比較 91 圖 目 錄 圖1-1 LIGA製程中的光刻、電鑄及模造 9 圖1-2 以LIGA技術製作,用來分離鈾原料之質量分離噴嘴 9 圖2-1 鉬的提煉過程與後續加工方法 26 圖2-2 銅-鉬的二元相圖 27 圖2-3 以粉末冶金法合成銅鉬合金不同含量比率下之機械性質 29 圖2-4 SEM觀察下的鉬奈米線 29 圖2-5 不同鉬鍍層之形貌圖:(a)顆粒細小之鍍層;(b)較厚的鍍層 30 圖2-6 銅-鈷的二元相圖 31 圖2-7 添加不同濃度檸檬酸鈉時,銅鈷合金鍍層形貌圖:(a)0.1莫耳;(b)1莫耳 32 圖2-8 銅-鎳的二元相圖 33 圖2-9 不同pH值與Cu/Ni離子比例時,鍍層中鎳的沉積比例 33 圖2-10 鎳沉積量、沉積效率與沉積電位關係圖 34 圖2-11 SEM下銅鎳合金鍍層之表面形貌:(a) 38 wt% Ni;(b) 50 wt% Ni 34 圖3-1 實驗流程示意圖 42 圖3-2 哈爾氏槽試驗設備 44 圖3-3 小型電鍍槽試驗設備圖 44 圖4-1 以硫酸銅鍍液沉積銅鉬合金時,哈爾氏槽內鍍液由藍變黑的情形 49 圖4-2 以硫酸銅為鍍液,電沉積銅鉬合金15分鐘後,黃銅片上鍍層分佈之情形 49 圖4-3 以焦磷酸銅為鍍液,電沉積銅鉬合金15分鐘後,黃銅片上鍍層分佈之情形 50 圖4-4 電流密度4~5 ASD處之鍍層形貌圖 50 圖4-5 以焦磷酸銅電鍍銅鉬合金,不同電流密度下之鍍層形貌圖: (a) 1 ASD;(b) 3 ASD;(c) 5 ASD 51 圖4-6 合金鍍層中,電流密度與鉬含量之關係圖 52 圖4-7 以氯化銨鍍浴電鍍純鉬之鍍層分佈圖 52 圖4-8 電流密度4~5 ASD處之鍍層形貌 53 圖4-9 M. Kitajima等學者以二次離子質譜儀在鉬的破裂處測得大量的氧原子存在 54 圖4-10 A. Kumar等學者以歐傑電子顯微鏡在鉬的破裂處測得大量的氧原子存在 54 圖4-11 由焦磷酸銅鍍液所沉積出之鍍層分布 62 圖4-12 以焦磷酸銅為鍍液,在電流密度5 ASD時之鍍層形貌 62 圖4-13 添加不同錯合劑進行電沉積時,電流密度1~5 ASD下之鍍層形貌:(a)氨基乙酸75 g/l;(b)檸檬酸鈉88.2 g/l 63 圖4-14 不同錯合劑與電流密度條件下,合金鍍層之表面形貌圖:(a)氨基乙酸75 g/l,3ASD;(b)檸檬酸鈉88.2 g/l,3ASD;(c)氨基乙酸75 g/l,5ASD;(d)檸檬酸鈉88.2 g/l,5ASD 64 圖4-15 以不同錯合劑於銅鈷合金電鍍時,電流密度與鈷離子沉積量之關係 65 圖4-16 不同檸檬酸鈉濃度下,各電流密度之鍍層形貌:(a) 29.4 g/l;(b) 58.8 g/l;(c) 88.2 g/l 66 圖4-17 添加不同濃度之檸檬酸鈉時,電流密度3ASD下之鍍層形貌圖:(a) 29.4 g/l;(b) 58.8 g/l;(c) 88.2 g/l 67 圖4-18 不同檸檬酸鈉濃度下,電流密度與鈷離子沉積量關係圖 68 圖4-19 不同硫酸鈷濃度時,各電流密度下鍍層之形貌:(a) 28.1 g/l;(b) 56.2 g/l;(c) 84.3 g/l 69 圖4-20 添加不同濃度之硫酸鈷時,電流密度3ASD下之鍍層形貌圖: (a) 28.1 g/l;(b) 56.2 g/l;(c) 84.3 g/l 70 圖4-21 不同硫酸鈷濃度下,電流密度與鈷離子沉積量之關係圖 71 圖4-22 不同硫酸鈷濃度下,電流密度與陰極電沉積效率關係圖 71 圖4-23 添加光澤劑的情形下,電流密度1~15 ASD的鍍層形貌 72 圖4-24 添加光澤劑12 ml/l,電流密度6 ASD下,電沉積15分鐘與60分鐘後之鍍層形貌 73 圖4-25 鍍液中添加光澤劑12 ml/l時,不同電流密度下之鍍層形貌: (a) 3 ASD;(b) 5 ASD;(c) 7 ASD 74 圖4-26 添加光澤劑12 ml/l的情形下,電流密度與鈷離子沉積量關係圖 75 圖4-27 銅鈷鍍層於電流密度6 ASD時之縱深分析 76 圖4-28 不同沉積時間下,鍍層之表面形貌 77 圖4-29 以SEM觀察不同沉積時間下之鍍層形貌:(a) 15分鐘;(b) 30分鐘;(c) 60分鐘;(d) 120分鐘 77 圖4-30 沉積時間與鍍層中鈷離子含量的關係圖 78 圖4-31 沉積時間與鍍層表面粗糙度的關係 78 圖4-32 硫酸銅鍍浴在添加檸檬酸鈉後產生沉澱的現象 79 圖4-33 以硫酸銅鍍液添加檸檬酸鈉為錯合劑時,鍍層之分佈情形 84 圖4-34 電流密度4~5 ASD處之鍍層形貌 84 圖4-35 不同檸檬酸鈉濃度進行電鍍時,電流密度1~5 ASD下之鍍層形貌:(a) 58.8 g/l;(b) 117.6 g/l 85 圖4-36 不同檸檬酸鈉濃度與電流密度下,合金鍍層之表面形貌圖:(a) 58.8 g/l,3 ASD;(b) 117.6 g/l,3 ASD;(c) 117.6 g/l,5 ASD 86 圖4-37 不同檸檬酸鈉濃度下,電流密度與鎳離子沉積量關係圖 87 圖4-38 不同添加條件下之合金鍍層形貌圖:(a)硼酸12.36 g/l;(b)銅光澤劑12 ml/l;(c)硼酸12.36 g/l與銅光澤劑12 ml/l 88 圖4-39 不同添加條件下,電流密度2 ASD時,合金鍍層之表面形貌圖:(a)硼酸12.36 g/l;(b)銅光澤劑12 ml/l;(c)硼酸12.36 g/l及銅光澤劑12 ml/l 89 圖4-40 銅鎳鍍層於電流密度2 ASD時之縱深分析 90 圖4-41 不同沉積時間下之鍍層形貌圖 92 圖4-42 以SEM觀察不同沉積時間下之鍍層形貌:(a) 30分鐘;(b) 60分鐘 92 圖4-43 電鑄後之微結構圖形 93 圖4-44 微結構表面呈現粗糙貌 93 圖4-45 應力的集中造成翹曲與裂痕 93

    參考文獻
    1. 楊啟榮 等人, “微機電系統技術與應用”, 精密儀器發展中心,第四章,pp.142 (2003).
    2. The technical Report of Institut für Mikrotechnik Mainz (IMM), Mainz Germany.
    3. A. Maner, S. Harsh and W. Ehrfeld, “Mass production of microdevices with extreme aspect ratio by electroforming”, Plating and Surface Finishing, Vol. 75, No. 3, pp. 60–65 (1988).
    4. W. Ehrfeld, W. Glashauser, D. Münchmeyer and W. Schelb, “Mask making for synchrotron radiation lithography”, Microelectronic Engineering, Vol. 5, pp. 463-470 (1986).
    5. 楊啟榮, “微系統類LIGA製程光刻技術”, 科儀新知, Vol. 22, No. 4, pp. 33-45 (2001).
    6. H. Miyajima and M. Mehregany, “High-aspect-ratio photolithography for MEMS applications”, J. Microelectromechanical Systems, Vol. 4, No. 4, pp. 220-229 (1995).
    7. G. Engelmann, O. Ehrmann and J. Simon, “Fabrication of high depth-to-width aspect ratio microstructures”, Proc. of Micro Electro Mechanical Systems Workshop, Trävemunde, Germany, pp. 93-98 (1992).
    8. R. A. Lawes, A. S. Holmes and F. N. Goodall, “The formation of moulds for 3D microstructures using excimer laser ablation”, Microsystem technologies, Vol.3, No.17, pp. 17-19 (1996).
    9. C. R. Yang, C. S. Chou, H. Y. Chou, H. S. Lin, W. K. Kuo, G. S. Luo and J. W. Chang, “PMMA microstructure as KrF excimer-laser LIGA material”, Proc. of SPIE, Vol. 3511, pp. 342-348 (1998).
    10. C. R. Yang et al., Proc. of the 15th CSME Conference, 7(1998).
    11. E. C. Harvey, P. T. Rumsby, M. C. Gower and J. L. Remnant, “Microstructuring by excimer laser”, Proc. of SPIE, Vol. 2639, pp. 266-277 (1995).
    12. N. C. MacDonald, “SCREAM microelectromechanical systems”, Micro- elecronic Engineering, Vol. 32, pp. 49-73 (1996).
    13. N. Rajan, M. Mehreqany, C. A. Zorman, S. Stefanescu and T. P. Kicher, “Fabrication and testing of micromachined silicon carbide and nickelfuel atomizers for gas turbine engines”, J. Microelectro- mechanical Systems, Vol. 8, No. 3, pp. 251-257 (1999).
    14. F. Läermer and A. Schilp, German Patent No. DE4241045.
    15. C. K. Chung, H. C. Liu and T. H. Jaw, “High aspect ratio silicon trench fabrication by inductively coupled plasma”, HARMST99, pp. 22-23 (1999).
    16. Holmes, Microsystems Technology, LIGA and Related Processes, Short course text at Imperial College UK (1997).
    17. 楊啟榮, “微機電系統技術導論”,國立台灣師範大學上課講義(2001).
    18. W. Ehrfeld, V. Hessel, H. Löwe, C. Schulz, L. Weber, “Materials of LIGA technology”, Microsystem Technologies, Vol. 5, No. 3, pp. 105-112 (1999).
    19. 屠振密, “電鍍合金原理與工藝”, 國防工業出版社, 第一章, pp. 1-11
    20. Y. Hiraoka and M. Ogasa, “Weldability of powder metallurgy molybdenum with low oxygen content”, Zeitschrift Fuer Matalkunde, Vol.78, No.3, pp.197-200 (1987).
    21. T. B. Massalski, “Binary alloy phase diagrams” 2nded, Materials Park, OH, ASM International (1990).
    22. A. G. Kostornov and V. P. Semenets, “Features of formation of interparticle contacts in sintering of porous molybdenum-copper composites”, Powder Metallurgy and Metal Ceramics, Vol. 29, No.3, pp.193-196 (1990).
    23. M. Osada, A. Ohtsuka, N. Ogasa and Y. Amano, “Substrate for semiconductor apparatus having a composite material”, US Patent, 5086333 (1992).
    24. R. M. German, “A model for the thermal properties of liquid-phase sintered composites”, Physical Metallurgy and Materials Science, Vol. 24, No. 8, pp.1745-1752. (1993).
    25. P. Yih and D. D. L. Chung, “A comparative study of the coated filler method and the admixture method of powder metallurgy for making metal-matrix composites”, Journal of Materials Science, Vol. 32, pp.2873-2882. (1997).
    26. O. A. Fregoso, S. López, J. A. Juárez-Islas, M. García, E. Martínez, M.A. Alvarez-Pérez, J.Ch. Ramírez, S. Granados et al., “Cu/Mo nanostructured alloy thin films”, Phys. Stat. Sol. B, Vol. 220(1), pp. 575-582 (2000).
    27. M. P. Zach, K. Inazu, K. H. Ng, J. C. Hemminger and R. M. Penner, “Synthesis of molybdenum nanowires with millimeter-scale lengths using electrochemical step edge decoration”, Chem. Mater., Vol. 14, pp.3206-3216 (2002).
    28. K. M. Yousif, “Modification of the electrodeposition method of molybdenum black coatings for solar energy applications”, Metal Finishing, Vol. 93, No. 6 pp.90-94 (1995).
    29. K. M. Yousif, B. E. Smith and C. Jeynes, “Investigation of microstructure of molybdenum- copper black electrodeposited coatings with reference to solar selectivity”, Journal of Materials Science, Vol. 31, No. 1, pp.185-191 (1996).
    30. F. Jahan and B. E. Smith, “Characterization of molybdenum black coatings on zinc substrates”, Journal of Materials Science, Vol. 32, No. 14, pp.3869-3874 (1997).
    31. E. B. Lehman and E. Chassaing, “Electrochemical investigation of the Ni-Cu-Mo electrodeposition system”, Journal of applied electrochemistry Vol. 27, No. 5, pp.568-572 (1997).
    32. M. N. Baibich, J. M. Broto, A. Fert and F. Petroff et al., “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices”, Phys. Rev. Lett., Vol. 61, pp. 2472-2475 ( 1988 ).
    33. E. Chassaing, A. Morrone and J. E. Schmidt, “Nanometric Cu-Co multilayers electrodeposited on indium-tin oxide glass”, Journal of the Electrochemical Society, Vol. 146, No. 5, pp. 1794-1797 (1999).
    34. T. Ohgai, X. HOffer, A. Fábián, L. Gravier and J. Ansermet, “Electrochemical synthesis and magnetoresistance properties of Ni, Co and Co/Cu nanowires in a nanoporous anodic oxide layer on metallic aluminum”, J. Mater. Chem., Vol. 13, pp. 2530-2534 (2003).
    35. K. Yamamoto and M. Kitada, “Microstructure and magnetoresistance in Cu-Co alloy thin films”, Thin Solid Films, Vol. 263, pp. 111-116 (1995).
    36. H. Zaman, A. Yamada, H. FuKuda and Y. Ueda, “Magnetoresistance effect in Co-Ag and Co-Cu alloy films prepared by electrodeposition”, J. Electrochem. Soc., Vol. 145, No. 2, pp. 565-568 (1998).
    37. R López, J. Herreros, A. García-Arribas, J. M. Barandiarán and M. L. Fdez-Gubieda, “Magnetic study of electrodeposited Cu-Co heterogeneous alloys”, Journal of Magnetism and Magnetic Materials, Vol. 196, pp. 53-55 (1999).
    38. R. L. Antón, M. L. Fdez-Gubieda, M. Insausti, A. Garca-Arribas and J. Herreros, ”Influence of the preparation method on the properties of Cu-Co heterogeneous alloys”, Journal of Non-Crystalline Solids, Vol. 287, No. 1, pp. 26-30 (2001).
    39. R. L. Antón, M. L. Fdez-Gubieda, A. Garca-Arribas, J. Herreros and M. Insausti, “Preparation and characterisation of Cu-Co heterogeneous alloys by potentiostatic electrodeposition”, Materials Science and Engineering, Vol. 335, No. 1, pp. 94-100 (2002).
    40. G. R. Pattanaik, S. C. Kashyap and D. K. Pandya, “Structure and giant magnetoresistance in electrodeposited granular Cu-Co films”, Journal of Magnetism and Magnetic Materials, Vol. 219, No. 3, pp. 309-316 (2000).
    41. G. R. Pattanaik, D. K. Pandya and S. C. Kashyap, “Giant magneto- resistance and magnetic properties of electrodeposited Cu-Co granular films’, Journal of alloys and Compounds, Vol. 326, No. 1, pp. 260-264 (2001).
    42. G. R. Pattanaik, D. K. Pandya and S. C. Kashyap, “Giant magneto- resistance in Cu-Co films electrodeposited on n-Si”, Journal of Magnetism and Magnetic Materials, Vol. 234, No. 2, pp. 294-298 (2001).
    43. G. R. Pattanaik, D. K. Pandya and S. C. Kashyap, “Effect of process parameters on GMR in electrodeposited Cu-Co nanogranular thin films”, The Solid films, Vol. 433, No. 1, pp. 247-251 (2003).
    44. Ö. F. Bakkaloglu and I. H. Karahan, “Magnetoresistance measurements on electrodeposited CxCu1-x alloy films”, Turk J Phy., Vol. 25, pp. 27-33 (2001).
    45. A. E. Mohamed, S.M. Rashwan, ,S.M. Abdel-Wahaab and M.M. Kamel, “Electrodeposition of Co-Cu alloy coatings from glycinate baths”, Journal of Applied Electrochemistry, Vol. 33, No. 11, pp. 1085-1092 (2003).
    46. E. Gómez, A. Llorente, X. Alcobe and E. Vallés, “Electrodeposition for obtaining homogeneous or heterogeneous cobalt-copper films”, Journal of Solid State Electrochemistry, Vol. 8, No. 2, pp. 82-88 (2004).
    47. V. I. Kharlamov, S. S. Kruglikov, N. S. Grigoryan and T. A. Vagramyan, “Microdistributions of electrolytic alloys and their components” Russian Journal of Electrochemistry, Vol. 37, No. 7, pp. 661-669 (2001).
    48. D. S. Leem, J. O. Song, J. S. Kwak, Y. Park, and T. Y. Seong, “High-quality Cu-Ni solid solution/Ag ohmic contacts for flip-chip light-emitting diodes”, Electrochemical and Solid State Letters, Vol. 7, No. 10, pp. G210-G212 (2004).
    49. W. A. Badawy, K. M. Ismail and A. M. Fathi, “Environmentally safe corrosion inhibition of the Cu–Ni alloys in acidic sulfate solutions”, Journal of Applied Electrochemistry, Vol. 35, No. 9, pp. 879-888 (2005).
    50. 黃振賢, “機械材料” ,京文圖書,第六版, pp. 337-339.
    51. I. Mizushima, M. Chikazawa, and T. Watanabe et al., “Microstructure of electrodeposited Cu-Ni binary alloy films”, J. Electrochem. Soc., Vol. 143, No. 6, pp.1978-1983 (1996).
    52. M. H. Fawzy, M. M. Ashour, M. A. El-Halim, “Effect of some operating variables on the characteristics of electrodeposited Cu-Ni alloys with and without α-Al2O3 and TiO2 inert particles”, J. Chem. Tech. Biotechnol, Vol. 66, pp. 121-130 (1996).
    53. M. L. Sartorelli, A. Q. Schervenski, R. G. Delatorre, P. Klauss, A. M. Maliska and A. A. Pasa, “Cu-Ni thin films electrodeposited on Si: composition and current efficiency”, Physica Status Solidi (A), Vol. 187, No. 1, pp. 91-95 (2001).
    54. R.G. Delatorre, M. L. Sartorelli, A. Q. Schervenski, A. A. Pasa and S. Güths, “Thermoelectric properties of electrodeposited CuNi alloys on Si”, Journal of applied physics, Vol. 93, pp. 6154-6158 (2003).
    55. C. L. Aravinda, S. M. Mayanna, P. Bera, V. Jayaram and A. K. Sharma, “XPS and XAES investigations of electrochemically deposited Cu-Ni solar selected black coatings on molybdenum substrate”, Journal of Materials Science Letters, Vol. 21, No. 3, pp. 205-208 (2002).
    56. K. Hong, J. K. Kim , S. K. Lee, S. Park, B. Gyun, Y. D. Ko, N. J. Jeon and J. S. Chung, “Effects of organic additives on magnetoresistance of electrodeposited Ni-Cu thin films”, Phys. Stat. Sol. (B), Vol. 241, No. 7, pp. 1681-1685 (2004).
    57. 友野理平、青谷薰、今井雄一及川合慧, “實用電鍍技術全集”, 復漢出版社, pp. 157, 166 (1983).
    58. L. E. olds and G. W. Rengstorff, “Effects of oxygen, nitrogen, and carbon on ductility of cast molybdenum”, Journal of Metals, Vol. 8, No. 2, pp.150-155 (1956).
    59. M. Kitajima, T. Noda and M. Okada, “SIMS analysis of oxygen on brittle fracture surface of molybdenum”, Journal of Materials Science Letters, Vol. 1, No. 5, pp. 223-226 (1982).
    60. Y. Hiraoka and M. Okada, “Weldability of powder-metallurgy molybdenum with low oxygen content”, Zeitschrift Metallkunde, Vol.78, No. 3, pp. 197-200 (1987).
    61. E. Fromm and H. Jehn, “Thermodynamics and phase relations in refractory metal solid solutions containing carbon, nitrogen, and oxygen”, Metallurgical Transactions, Vol. 3, pp. 1685-1692 (1972).
    62. A. Kumar and B. L. Eyre, “Grain boundary segregation and intergranular fracture in molybdenum”, Proc. of the Royal Society of London, Vol. 370, No. 1743, pp. 431-458 (1980).
    63. M. Shima, L. Salamanca-Riba, T. P. Moffat and R. D. McMichael, “Structural and magnetic properties of electrodeposited Co/Cu multilayers”, Journal of Magnetism and Magnetic Materials, Vol.198, pp. 52-54 (1999).
    64. J. J. Kelly, M. Cantoni and D. Landolt, “Three-dimensional structuring of electrodeposited Cu-Co multilayer alloys”, Journal of the Electrochemical Society, Vol. 148, No. 9, pp. C620-C626 (2001).
    65. Y. Hayashi, C. G. Lee, B. H. Koo, T. Sato, M. Arita and M. Masuda, “Growth of Co/Cu multilayered thin films by electro- deposition”, Phys. Stat. Sol. (A), Vol. 201, No. 8, pp. 1658-1661 (2004).
    66. Q. Liu, J. H. Min, J. U. Cho, and Y. K. Kim , “The pH dependence of Co-Cu alloy thin films fabricated on amorphous substrate by DC electrodeposition”, Transactions on Magnetics, Vol. 41, No. 2, pp. 930-932 (2005).

    無法下載圖示 本全文未授權公開
    QR CODE