研究生: |
梁書晨 LIANG, Shu-Chen |
---|---|
論文名稱: |
利用一價銠金屬催化有機硼酸及二烯炔衍生物進行不對稱骨牌芳基環化反應 Enantioselective Rh(I)-Catalyzed Desymmetrization of Dieneynes via Domino Reactions Initiated by Arylation |
指導教授: |
吳學亮
Wu, Hsyueh-Liang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 251 |
中文關鍵詞: | 銠金屬催化 、掌性雙烯配基 、不對稱骨牌環化反應 |
英文關鍵詞: | Rh(I)-catalyst, chiral diene ligand, Enantioselective domino reaction |
DOI URL: | http://doi.org/10.6345/NTNU201900334 |
論文種類: | 學術論文 |
相關次數: | 點閱:229 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中主要探討利用一價銠金屬與掌性雙環[2.2.1]雙烯配基L5a所生成之掌性催化劑,催化芳香基硼酸試劑7對二烯炔之衍生物21進行不對稱骨牌環化反應(Enantioselective domino reaction),生成具有兩個掌性中心之環化產物24,其中鏡像選擇性最高達到>99.5%,產率最高達到92%。
預期利用合環產物24中環己二烯(Cyclohexadiene)之結構作為共軛雙烯體,與親二烯體(Dienophiles)進行狄耳士-阿德爾反應(Diels-Alder reaction)生成環加成產物63 以及環加成產物64。
This thesis describes the enantioselective domino reaction of starting material 21 with arylboronic acid 7 in the presense of a Rh(I)-catalyst consisting chiral diene ligand L5a. The chiral adducts 24 were obtained in up to 92% yield and with up to >99.5% ee.
The chiral 1,3-cyclohexadienes 24 was predicted with acylnitroso to afford cycloadducts 63 and 64.
1. Moss, G. P. Pure & Appl. Chem. 1996, 68, 2193-2222.
2. Fahlbusch, K.-G.; Hammerschmidt, F.-J.; Panten, J.; Pickenhagen, W.; Schatkkowski, D.; Bauer, K.; Garbe D.; Surburg, H. Flavors and fragrances. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2003.
3. Shallenberger, R. S. Taste Chemistry; Chapman & Hall: London, UK, 1993.
4. Rundlett, K. L.; Armstrong, D. W. Chirality 1994, 6, 277–282.
5. Van Caillie-Bertrand, M.; Degenhart, H. J.; Luijendijk, I.; Bouquet, J.; Sinaasappel, M. Arch. Dis. Child. 1985, 60, 652–655.
6. (a) Vineyard, B. D.; Knowles, W.S.; Sabacky, M. J.;Bachman, G. L.; Weinkauff, D. J. J. Am. Chem. Soc. 1977, 99, 5946–5952. (b) Knowles, W.S. Angew. Chem. Int. Ed. 2002, 41, 1998–2007; Angew. Chem. 2002, 114, 2096–2107.
7. (a) Noyori, R.; Okhuma, T.; Kitamura, M.; Takaya, H.; Sayo, N.; Kumobayashi, H.; Akutagawa, S. J. Am. Chem. Soc. 1987, 109, 5856–5858. (b) Takaya, H.; Akutagawa, S.; Noyori, R. Org. Synth. 1989, 67, 20–32. (c) Kitamura, M.; Tokunaga, M.; Ohkuma, T.; Noyori, R. Org. Synth. 1993, 71, 1–13.
8. (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974–5976. (b) Rossiter, B.; Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 464–465. (c) Martin, V.; Woodard, S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 6237–6240. (d) Sharpless, K. B.; Behrens, C. H.; Katsuki, T.; Lee, A. W. M.; Martin, V. S.; Takatani, M.; Viti, S.M.; Walker, F. J.; Woodard, S. S. Pure Appl. Chem. 1983, 55, 589–604. (e) Hanson, R. M.; Sharpless, K. B. J. Org. Chem. 1986, 51, 1922–1925. (f) Gao, Y.; Klunder, J. M.; Hanson, R. M.; Masamune, H.; Ko, S. Y.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765–5780. (g) Jacobsen, E. N.; Marko, I.; Mungall, W. S. Schroeder, G.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968–1970. (h) Johnson, R. A.; Sharpless, K. B. Comp. Org. Synth. 1991, 7, 389–436. (i) Finn, M. G.; Sharpless, K. B. J. Am. Chem. Soc. 1991, 113, 113– 126. (j) Sharpless, K. B., et al. J. Org. Chem. 1992, 57, 2768-2771. (k) Kolb, H. C.; Van Nieuwenhze M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483-2547. (l) DelMonte, A. J.; Houk, K. N.; Sharpless, K. B.; Singleton, D. A.; Strassner, T.; Thomas, A. A. J. Am. Chem. Soc. 1997, 119, 9907-9908.
9. (a) Miyaura, N.; Yanggi, T.; Suzuki, A. Synth. Commun. 1981, 11, 513–519. (b) Cho, C. S.; Motofusa, S.; Ohe, K.; Uemura, S. J. Org. Chem. 1995, 60, 883–888. (c) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483.
10. Wang, J.; Liu, B.; Zhao, H.; Wang. J. Organometallics 2012, 31, 8598–8607.
11. (a) Takahashi, H.; Hossian, K. M.; Nishihara, Y.; Shibata, T.; Takagi,
K. J. Org. Chem. 2006, 71, 671–675. (b) Lai, C.-S.; Kao, H.-L.; Wang, Y.-J.; Lee, C.-F. Tetrahedron Lett. 2012, 53, 4365–4367. (c) Nakamura, K.; Yasui, K.; Tobisu, M.; Chatani, N. Tetrahedron 2015, 71, 4484–4489.
12. Tian, P.; Dong, H.-Q.; Lin, G.-Q. ACS Catal. 2012, 2, 95-119.
13. Miura, T.; Shimada, M.; Murakami, M. Chem.—Asian J. 2006, 1, 868.
14. Miura, T.; Sasaki, T.; Nakazawa, H.; Murakami, M. J. Am. Chem. Soc.
2005, 127, 1390.
15. Hayashi, T.; Inoue, K.; Taniguchi, N.; Ogasawara, M. J. Am. Chem.
Soc. 2001, 123, 9918–9919.
16. (a) Lautens, M.; Yoshida, M. Org. Lett. 2002, 4, 123–125. (b) Lautens,
M.; Yoshida, M. J. Org. Chem. 2003, 68, 762–769.
17. Chen, Y.; Lee, C. J. Am. Chem. Soc. 2006, 128, 15598–15599.
18. Keilitz, J.; Newman, S. G.; Lautens, M. Org. Lett. 2013, 15, 1148–1151.
19. He, Z.-T.; Tian, B.; Yuki, F.; Tong, X.; Tian, P.; Lin, G.-Q. Angew.
Chem. Int. Ed. 2013, 52, 5314 –5318.
20. Duan, C.-L.; Tan, Y.-X.; Zhang, J.-L.; Yang, S.; Dong, H.-Q.; Tian, P.;
Lin, G.-Q. Org. Lett. 2019, 21, 1690−1693.
21. Gollapelli, K. K.; Donikela, S.; Manjula, N.; Chegondi, R. ACS Catal.
2018, 8, 1440−1447.
22. Wei, W.-T.; Yeh, J.-Y.; Kuo, T.-S.; Wu, H.-L. Chem. Eur. J. 2011, 17,
11405–11409.
23. Hossain, Md. D.; Kitamura, T. J. Org. Chem. 2005, 70, 6984-6986.
24. Tello-Aburto, R.; Harned, A. M. Org. Lett. 2009, 11, 3998–4000.
25. Luche, J. L. J. Am. Chem. Soc. 1978, 100, 2226-2227.
26. Diels, O.; Alder, K. Ann. 1928, 460, 98.
27. Kinsman, A. C.; Kerr, A. M. Org. Lett. 2000, 2, 3517–3520.
28. Hara, K.; Akiyama, R.; Sawamura, M. Org. Lett. 2005, 7, 5621–5623.
29. Bhojgude, S. S.; Thangaraj, M.; Suresh E.; Biju, A. T. Org. Lett. 2014,
16, 3576−3579.
30. Chu, C.-S.; Lee, Y.-H.; Rao, P. D.; Ko, S.; Song, L.-D.; Shiao, H.-C.;
Liao, C.-C. J. Org. Chem. 1999, 64, 4102–4110.
31. Bollans, L.; Bacsa, J.; Igoo, J. A.; Morrisb, G. A.; Stachulski, A. V.
Org. Biomol. Chem. 2009, 7, 4531–4538.