簡易檢索 / 詳目顯示

研究生: 江俊漢
Chiang, Chun-Han
論文名稱: 中文閱讀困難兒童之音樂節奏感與聲韻覺識相關分析及訓練成效
The Relationship of Musical Rhythm to Phonological Awareness and Its Training Effect on Children with Chinese Reading Difficulties
指導教授: 郭靜姿
Kuo, Ching-Chih
學位類別: 博士
Doctor
系所名稱: 特殊教育學系
Department of Special Education
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 192
中文關鍵詞: 閱讀困難聲韻覺識節奏感事件相關磁場音樂節奏遊戲
英文關鍵詞: Reading difficulties, Phonological awareness, Musical rhythm, Event-related field, Musical rhythm game
DOI URL: http://doi.org/10.6345/NTNU202000218
論文種類: 學術論文
相關次數: 點閱:397下載:43
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大腦處理語言與音樂的關係長久以來已有許多文獻,目前既有的研究多是以西方語言閱讀者為主,對於節奏感與閱讀識字的關係在中文閱讀脈絡下尚待研究證實。本研究主要探究中文閱讀困難兒童音樂節奏、聲韻覺識與閱讀表現之間的關係。共包含兩個子研究,研究一以中文閱讀困難兒童與一般兒童為受試者,蒐集行為測驗與腦磁波的資料進行比較,在行為資料方面採用獨立樣本t檢定比較兩組受試者的聲韻覺識與音樂能力的差異,並透過相關分析探討聲韻覺識、音樂表現與閱讀能力之關係;腦磁波則透過腦磁儀(MEG)蒐集受試者大腦對於音樂節奏的反應,採用無母數置換t檢驗分析兩組受試者事件相關磁場之差異。研究二以中文閱讀困難兒童為介入對象,透過音樂節奏遊戲指標篩選,選取合適的節奏遊戲進行節奏訓練,採用單一受試研究法中的多試探設計進行成效分析。研究結果如下:

    一、中文閱讀困難兒童聲韻覺識和音樂知覺與節奏表現明顯不如一般兒童,表示中文閱讀困難兒童除了有聲韻覺識缺陷外,音樂節奏知覺與節奏表現也有困難。
    二、在排除年齡與智商後,節奏表現仍顯著與識字相關。
    三、中文閱讀困難兒童大腦對於音樂節奏感的腦磁波反應與一般兒童有顯著上的差異,特別是P3am在組間有顯著差異。
    四、音樂節奏遊戲能提升中文閱讀困難兒童之節奏知覺與聲韻覺識表現。

      綜合本研究結果,研究者對於未來研究與教學上,針對中文閱讀表現、聲韻覺識、音樂節奏感之關係與中文閱讀困難兒童的音樂節奏訓練上提出建議。

    Existing literature has argued that processing of language and music shares similar and overlapped resource. However, this phenomenon is still controversial and not yet properly studied in Chinese-reading context, specifically in children with Chinese reading difficulties (RD). This quantitative research aimed to explore the relationships among musical rhythm, phonological awareness (PA), and reading. Two series of studies were included. Study 1 recruited Chinese children with RD and chronological age (CA) children and used independent sample t-test to investigate the difference of PA and music abilities between groups. In Study 1, Pearson correlation method was adopted to examine the relationship among those variables. Meanwhile, the electrophysiological response of musical rhythm was detected in this MEG experiment and permutation t-test was used to compare the event-related field (ERF) of two groups. In Study 2, only Chinese children with RD were recruited and multiple-probe design was adopted to explore the training effects of musical rhythm game screened by the valid index. The results of Study 1 and 2 are as follows:

    1. Children with RD performed significantly poorer in PA and musical abilities than CA children. The results confirmed that Chinese children with RD showed significant deficits not only in PA but also in music perception and rhythm production.
    2. After controlling age and IQ factors, rhythm production was strongly related to Chinese character reading.
    3. The brain responses of RD children were significantly weaker than CA children, especially in the event-related field, namely, P3am.
    4. RD children with the training of musical rhythm game showed positive effects in processing musical rhythm perception and the performance of PA.

    Two implications, related to theory and teaching practice, are noted in the conclusion. For the theoretical part, this study sheds a new light over the complicated relationship between reading, PA, musical perception, and rhythm production. For the educational part, the results suggest a new solution how to make better musical perception training for those children with reading difficulties.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與研究問題 6 第三節 名詞解釋 7 第二章 文獻探討 12 第一節 音樂、語言與閱讀 12 第二節 音樂節奏感之神經心理機制 28 第三節 音樂節奏介入對閱讀發展的成效 41 第三章 研究方法 59 第一節 整體研究設計與架構 59 第二節 研究一:音樂節奏、聲韻與識字閱讀之關係研究 62 第三節 研究二:音樂節奏訓練之介入研究 75 第四章 研究結果與討論 82 第一節 閱讀、聲韻與音樂行為之分析結果 82 第二節 音樂節奏知覺之腦磁波分析結果 104 第三節 音樂節奏訓練成效之分析結果 121 第五章 結論與建議 142 第一節 結論 142 第二節 研究限制 148 第三節 研究建議 149 參考文獻 153 附錄 179

    王心瑩(譯)(2013):迷戀音樂的腦(D. J. Levitin著:This is your brain on music: The science of human obssesion)。新北市:大家出版。
    王立志、楊憲明(2015):漢語發展性閱讀障礙學生之亞型分類研究。特殊教育研究學刊,40(1),55-83。DOI:10.6172/BSE.201403.4001003
    杜正治(2006):單一受試研究法。台北市:心理。
    杜正治(譯)(1994):單一受試研究法。(J. W. Tawney & D. L. Gast 著: Single subject research in special education)台北:心理出版社。(原著出版於1984)。
    邱浩政(2002):量化研究分析與統計分析:SPSS中文視窗版資料分析範例解析。台北:五南。
    李俊仁、柯華葳 (2007) :中文閱讀弱讀者的認知功能缺陷:視覺處理或是聲韻覺識 ?特殊教育研究學刊,32(4),1-18頁。
    李俊仁(2010):認識閱讀障礙與閱讀困難。載於李俊仁、阮啟弘等合著:大腦、認知與閱讀(189-208頁)。台北:信誼基金出版社。
    吳明隆(2007):SPSS操作與應用-問卷統計分析實務。台北:五南圖書出版。
    何思慧(2007):遊戲教學應用於國小低年級節奏教學之研究。台北市立教育大學音樂教育學習音樂教學碩士班,未出版碩論文。
    林坤燦、羅清水、邱瀞瑩(2008):臺灣地區大專校院身心障礙學生休退學現況調查研究。東臺灣特殊教育學報,10,1-19。
    林寶貴、黃玉枝、黃桂君、宣崇慧(2009):修訂學齡兒童語言障礙評量表。台北:教育部。
    柯華葳、詹益綾(2007):國民小學(二至六年級)閱讀理解篩選測驗。台北:教育部。
    柯華葳(2010):閱讀理解教學。載於王瓊珠、陳淑麗主編突破閱讀困難-理念與實務(P167-186)。台北:心理出版社。
    洪維聯、黃志方、陳菁惠(2012):音樂節奏遊戲之可玩性研究-以『節奏天國』為例。資訊傳播研究,3(1),43-57。doi:10.6144/JIC.2012.0301.03
    洪儷瑜、王瓊珠、張郁雯、陳秀芬(2006a):識字量評估測驗。台北:教育部。
    洪儷瑜、王瓊珠、張郁雯、陳秀芬(2006b):常見字流暢性測驗。台北:教育部。
    宣崇慧、盧台華(2006):聲韻覺識能力及口語詞彙知識與國小一至二年級學童字、詞閱讀發展之探究。特殊教育研究學刊,31,73-92。
    宣崇慧、蘇政輝、陳必卿、余孟儒、王涵、張文真、邱郁芬(2012):學前聲韻處理、快速唸名與視覺記憶力預測小一學童識字困難效能之檢測。特殊教育研究學看,37(1),53-78。
    宣崇慧、蔡建鈞(2016):學前識字困難高危險群幼兒之鑑別:學前教師評定搭配認知測驗兩階段篩選機制區辨效能之檢驗。特殊教育研究學刊,41(2),27-56。Doi:10.6172/BSE200609.3101004
    黃秀霜(2001):中文年級認字量表。台北:心理。
    陳文婉(1986):幼兒音樂節奏教學。台北市:信誼基金出版社。
    陳心怡、花茂棽、張本聖、陳榮華(2011):以「魏氏兒童智力量表」(第四版)的四個因素為基礎之簡式版本分析:臨床應用指引。測驗學刊,58(4),585-611。
    陳詩瑾、曾善美(2012):運用電子白板於國小六年級音樂節奏學習成效之研究。台中教育大學學報:人文藝術類,26(1),79-98。
    陳弘哲、劉維玉(2013):音樂節奏電玩對國小學童節奏感影響之研究。台北市立教育大學學報:教育類,44(1),85-118。doi:10.6336/JUTe/2013.44(1)4
    陳英玖(2015):節奏型音樂教學對閱讀能力之影響:以桃園M公立國小三年級學童為例。銘傳大學教育研究碩士在職專班,未出版碩士論文。
    陳淑麗、曾世杰(2005):唸名速度及聲韻覺識在中文閱讀障礙亞型分類上的角色-個案補救教學研究。載於洪儷瑜、王瓊珠、陳長益合編:突破學習困難-評量與因應之探討(179-214頁)。台北:心理。
    曾世杰、簡淑真、張媛婷、周蘭芳、連芸伶(2005):以早期唸名速度及聲韻覺識預測中文閱讀與認字:一個追蹤四年的相關研究。特殊教育研究學刊,28,123-144。
    曾世杰、陳淑麗、謝燕嬌(2005):聲韻覺識測驗。台北:教育部。
    曾世杰(2010):注音與聲韻覺識教學。載於王瓊珠、陳淑麗主編:突破閱讀困難-理念與實務(頁103-128)。台北:心理出版社。
    曾世杰、張毓仁、簡淑真、林彥同(2011):快速自動化唸名測驗。台北市:心理出版社。
    鈴木英明(1989):節奏練習:基礎與應用篇。全音樂譜出版社編譯委員會(譯)。台北市:全音樂譜出版社有限公司。
    廖晨惠、黃忻怡、曹傑茹、白鎧鋕(2012):國小低年級學童聲韻覺識、聲旁表音覺識、造詞能力、斷詞能力、與中文閱讀之縱貫性研究。測驗統計年刊,20,31-65。
    廖晨惠、李畊緯、曹傑茹、白鎧鋕(2014):國小學童詞素覺識、聲韻覺識、字型處理能力與中文字詞認讀能力之相關研究。測驗學刊,61(4),489-508。
    鄭靜宜(2005):不同言語速度、發語單位和發語位置對國語音段時長的影響。南大學報,39(1),161-185。
    劉鴻香、陸莉(1997):拜瑞-布坦尼卡:視覺-動作統整測驗。台北:心理。
    蔡振家(2013):音樂認知心理學。台北:國立臺灣大學出版中心。
    蔡淑慧、沈俊毅(2013):Wii太鼓達人遊戲融入國民中學音樂節奏教學之研究。數位學習科技期刊,5(2),1-26。DOI: 10.3966/2071260X2013040502001
    蕭瑞玲、孟瑛如(2014):探討音樂活動對於特殊需求兒童聽覺處理能力訓練之效益。特教論壇,17,17-37。DOI:10.6502/SEF.2014.17. 17-37
    Abboub, N., Nazzi, T., & Gervain, J. (2016). Prosodic grouping at birth. Brain and Language, 162, 46-59. doi.org/10.1016/j.bandl.2016.08.002
    Abrams, D. A., Bhatara, A., Ryali, S., Balaban, E., Levitin, D. J., & Menon, V. (2010). Decoding temporal structure in music and speech relies on shared brain resources but elicits different fine-scale spatial patterns. Cerebral Cortex, 21(7), 1507-1518. doi: 10.1093/cercor/bhq198.
    Abrams, D. A., Nicol, T., Zecker, S., and Kraus, N. (2009). Abnormal cortical processing of the syllable rate of speech in poor readers. J. Neurosci. 29, 7686-7693. doi:10.1523/JNEUROSCI.5242-08.2009
    Adams, M. J. (1990). Beginning to read, thinking, and learning about print. Cambridge, MA MIT Press.
    American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author.
    Anguera, J. A., Boccanfuso, J., Rintoul, J. L., Al-Hashimi, O., Faraji, F., Janowich, J., et al. (2013). Video game training enhances cognitive control in older adults. Nature, 501, 97-101. doi: 10.1038/nature12486
    Angulo-Perkins, A., Aubé, W., Peretz, I., Barrios, F. A., Armony, J. L., & Concha, L. (2014). Music listening engages specific cortical regions within the temporal lodes: Differences between musicians and non-musicians. Cortex, 59, 126-137.
    Anvari, S. H., Trainor, L. J., Woodside, J., & Levy, B. A. (2002). Relations among musical skills, phonological processing, and early reading ability in preschool children. Journal of Experimental Child Psychology, 83, 111-130.
    Atterbury, B. W. (1985). Musical differences in learning-disabled and normal-achieving readers aged seven, eight, and nine. Psychology of Music, 13, 114-123.
    Bégel. V., Di Loreto, I., Seilles, A., & Dalla Bella, S. (2017). Music games: Potential application and considerations for rhythmic training. Front. Hum. Neurosci., 11(273). doi: 10.3389/fnhum.2017.00273
    Bekius, A., Cope, T.E., & Grube, M. (2016). The beat to read: A cross-lingual link between rhythmic regularity perception and reading skill. Front. Hum. Neurosci., 10(425). doi: 10.3389/fnhum.2016.00425
    Beier, E. J., & Ferreira, F. (2018). The temporal prediction of stress in speech and its relation to musical beat perception. Front. Psychol., 9(431). doi: 10.3389/fpsyg.2018.00431
    Bermudez, P. & Zatorre, R. J. (2005). Conditional associative memory for musical stimuli in nonmusicians: Implications for absolute pitch. J. Neurosci., 25, 7718-7723.
    Besson, M., Chobert, J., & Marie, C. (2011). Transfer of training between music and speech: Common processing, attention, and memory. Front. Psychol., 2(94). doi: 10.3389/fpsyg.2011.00094
    Bhatara, A., Boll-Avetisyan, N., Unger, A., Nazzi, T., & Höhle, B. (2013). Native language affects rhythmic grouping of speech. The Journal of the Acoustical Society of America, 134(5), 3828-3843.
    Bhide, A., Power, A., & Goswami, U. (2013). A rhythmic musical intervention for poor readers: A comparison of efficacy with a letter-based intervention. Mind, Brain, and Education, 7(2), 113-123.
    Bishop-Liebler, P., Welch, G., Huss, M., Thomson, J. M., & Goswami, U. (2014). Auditory temporal processing skills in musicians with dyslexia. Dyslexia, 20, 261-279. DOI: 10.1002/dys.1479
    Bonacina, S., Cancer, A., Lanzi, P. L., Lorusso, M. L., & Antonietti, A. (2015). Improving reading skills in students with dyslexia: The efficacy of a sublexical training with rhythmic background. Front. Psychol., 6(1510), 1-8. doi: 10.3389/fpsyg.2015.01510
    Bouwer, F. L., Van Zuijen, T. L., Honing, H. (2014). Beat processing is pre-attentive for metrically simple rhythms with clear accents: An ERP study. PLoS ONE, 9(5): e97467. doi:10.1371/journal.pone.0097467
    Bouwer, F. L., & Honing, H., (2015). Temporal attending and prediction influence the perception of metrical rhythm: Evidence from reaction times and ERPs. Front. Psychol., 6, 1094. http://dx.doi.org/10.3389/fpsyg.2015.01094.
    Bouwer, F. L., Werner, C. M., Knetemann, M., & Honing, H. (2016). Disentangling beat perception from sequential learning and examining the influence of attention and musical abilities on ERP responses to rhythm. Neurospychologia, 85, 80-90. http://dx.doi.org/10.1016/j.neuropsychologia.2016.02.018
    Breznitz, Z., & Meyler, A. (2003). Speed of lower-level auditory and visual processing as a basic factor in dyslexia: Electrophysiological evidence. Brain and Language, 85, 166-184.
    Butzlaff, R. (2000). Can music be used to teach reading? The Journal of Aesthetic Education, 34(3/4), 167-178.
    Cancer, A., Stievano, G., Pace, G., Colombo, A., & Antonietti, A. (2019). Cognitive processes underlying reading improvement during a rhythm-based intervention. A small-scale investigation of Italian children with dyslexia. Children, 6(91), 1-8. doi:10.3390/children6080091
    Carmeron, D. J., & Grahn, J. A. (2014). Neuroscientific investigation of musical rhythm. Acoustics Australia, 42(2), 111-116.
    Cason, N., & Schön, D. (2012). Rhythmic priming enhances the phonological processing of speech. Neuropsychologia, 50, 2652-2658.
    Cason, N., Astésano, C., & Schön, D. (2015). Bridging music and speech rhythm: Rhythmic priming and audio-motor training affect speech perception. Acta Psychologia, 155, 43-50.
    Carrus, E., Pearce, M. T., & Bhattacharya, J. (2013). Melodic pitch expectation interacts with neural responses to syntactic but not semantic violations. Cortex, 49, 2186–2200. doi: 10.1016/j.cortex.2012.08.024
    Chandrasekaran, B., Krishnan, A., & Gandour, J. T. (2007). Mismatch negativity to pitch contours is influenced by language experience. Brain research, 1128(1),148-56.
    Cheng, Y.-Y., & Lee, C.-Y. (2018). The development of mismatch responses to Mandarin lexical tone in 12- to 24-month-old Infants. Front. Psychol., 9(488). doi.org/10.3389/fpsyg.2018.00448
    Chiang, C. H., Chen, I. C., & Wang, S. L. (2017). Perception of amplitude onset signals in Chinese children with reading difficulties and specific language impairment. Journal of Special Education and Rehabilitation, 18(1-2), 109-125.
    Ćeponienė, R., Lepistö, T., Soininen, M., Aronen, E., Alku, P., & Näätänen, R. (2004). Event-related potentials associated with sound discrimination versus novelty detection in children. Psychophysiology, 41, 130-141. doi.org/10.1111/j.1469- 8986.2003.00138.x.
    Cogo-Moreira, H., de Ávila C. R. B., Ploubidis, G. B., & de Jesus Mari, J. (2013a). Pathway evidence of how musical perception predicts word-level reading ability in children with reading difficulties. PLoS ONE, e84375. doi:10.1371/journal.pone.0084375
    Cogo-Moreira, H., de Ávila, C. R. B., Ploubidis, G. B., & de Jesus Mari J. (2013b). Effectiveness of music education for the improvement of reading skills and academic achievement in young poor readers: a pragmatic cluster-randomized, controlled clinical trial. PLoS ONE, 8:e59984. doi: 10.1371/journal.pone.0059984
    Colling, L. J., Noble, H. L., & Goswami, U. (2017). Neural entrainment and sensorimotor synchronization to the beat in children with developmental dyslexia: An EEG study. Front. Neurosci., 11(360). doi:10.3389/fnins.2017.00360
    Connolly, T. M., Boyle, E. A., MacArthur, E., Hainey, T., & Boyle, J. M. (2012). A systematic literature review of empirical evidence on computer games and serious games. Comput. Educ., 59, 661-686. doi: 10.1016/j.compedu.2012. 03.004
    Corbera, S., Escera, C., & Artigas, J. (2006). Impaired duration mismatch negativity in developmental dyslexia. Neuroreport, 17(10), 1051-1055. doi:10.1097/01.wnr.0000221846.43126.a6
    Corriveau, K. H., & Goswami, U. (2009). Rhythmic motor entrainment in children with speech and language impairments: tapping to the beat. Cortex, 45, 119-130. doi: 10.1016/j.cortex.2007.09.008
    Corrigall, K., & Trainor, L. J. (2009). Effects of musical training on key and harmony perception. The Neurosciences and Music III-Disorders and Plasticity: Ann. N. Y. Acad. Sci., 1169, 164-168. Doi: 10.1111/j.1749-6632.2009.04769.x
    Cutler, A. (1976). Phoneme-monitoring reaction time as a function of intonation contour. Percept. Psychophys., 20, 55-60. doi: 10.3758/BF03198706
    Drake, C., Penel, A., & Bigand, E. (2000). Tapping in time with mechanically and expressively performed music. Music Perception, 18(1), 1-23. doi:10.2307/40285899
    Degé, F., Kubicek, C., & Schwarzer, G. (2015). Associations between musical abilities and precursors of reading in preschool aged children. Front. Psychol., 6(1220). doi: 10.3389/fpsyg.2015.01220
    Dittinger, E., Chobert, J., Ziegler, J. C., & Besson, M. (2017) Fast brain plasticity during word learning in musically-trained children. Front. Hum. Neurosci., 11(233). doi: 10.3389/fnhum.2017.00233
    Donchin, E. (1981) Surprise!... Surprise?. Psychophysiology, 18(5), 493-513. 
    Donchin, E., & Coles, M. G. H. (1988). Is the P300 component a manifestation of context updating? Behav. Brain Sci., 11, 357-374.
    Donhauser, P. W., & Baillet, S. (2019). Two Distinct Neural Timescales for Predictive Speech Processing. Neuron. (in Press) doi:10.1016/j.neuron.2019.10.019 
    Douglas, S., & Willats, P. (1994). The relationship between musical ability and literacy skills. Journal of Research in Reading, 17, 99-107.
    Fedorenko, E., Patel, A., Casasanto, D., Winawer, J., & Gibson, E. (2009). Structural integration in language and music: Evidence for a shared system. Memory and Cognition, 37, 1-9. doi: 10.3758/MC.37.1.1
    Flaugnacco, E., Lopez, L., Terribili, C., Zoia, S., Buda, S., Tilli, S., Monasta, L., Montico, M., Sila, A., Ronfani, L., & Schön, D. (2014). Rhythm perception and production predict reading abilities in developmental dyslexia. Front. Hum. Neurosci., 8(392). doi: 10.3389/fnhum.2014.00392
    Flaugnacco, E., Lopez, L., Terribill, C., Montico, M., Zoia, S., & Schön D. (2015). Music training increases phonological awareness and reading skills in developmental dyslexia: A randomized control trial. PLoS ONE, 10(9), e0138715. doi:10.1371/journal.pone.0138715
    Ford, T. C., Woods, W., & Crewther, D. P., (2018). Magnetoencephalography reveals an increased non-target P3a, but not target P3b, that is associated with high non-clinical psychosocial deficits. Psychiatry Research: Neuroimaging, 271, 1-7. doi.org/10.1016/j.pscychresns.2017.11.012.
    François, C., Chobert, J., Besson, M., & Schön D. (2013). Music training for the development of speech segmentation. Cerebral Cortex., 23, 2038-2043. doi:10.1093/cercor/bhs180
    Fujioka, T., Trainor, Ross, B., Kakigi, R., & Pantev, C. (2004). Musical training enhances automatic encoding of melodic contour and interval structure. Journal of Cognitive Neuroscience, 16(6), 1010-1021.
    Fujioka, T., Trainor, L. J., Large, E. W., & Ross, B. (2012). Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. The Journal of Neuroscience, 32(5), 1791-1802.
    Gaser, C. & Schlaug, G. (2003). Brain structures differ between musicians and nonmusicians. J. Neurosci, 23, 9240-9245.
    Geiser, E., Sandmann, P., Jäncke, L., & Meyer, M., (2010). Refinement of metre perception training increases hierarchical metre processing. Eur. J. Neurosci. 32(11), 1979-1985. http://dx.doi.org/10.1111/j.1460-9568.2010.07462.x.
    Giraud, A., & Poeppel, D. (2012). Cortical oscillations and speech processing: emerging computational principles and operations. Nat. Neurosci., 15, 511-517. doi: 10.1038/nn.3063
    Goswami, U., Thomson, J., Richardson, U., Stainthorp, R., Hughes, D., Rosen, S., & Scott, S. K. (2002). Amplitude envelope onsets and developmental dyslexia: A new hypothesis. Proc. Natl. Acad. Sci., 99(16), 10911-10916.
    Goswami, U. (2006). Neuroscience and education: from research and practice. Nature Reviews Neuroscience, 7(5), 406-411. doi:10.1038/nrn1907
    Goswami, U. (2011). A temporal sampling framework for developmental dyslexia. Trends in Cognitive Sciences, 15, 3-10.
    Goswami, U., Wang, H. L., Cruz, A., Fosker, T., Mead, N., & Huss, M. (2011). Language-universal sensory deficits in developmental dyslexia: English, Spanish, and Chinese. J. Cogn. Neurosci., 23, 325-337. doi: 10.1162/jocn.2010. 21453
    Goswami, U., Huss, M., Mead, N., Fosker, T., & Verney, J. P. (2013). Perception of patterns of musical beat distribution in phonological developmental dyslexia: Significant longitudinal relations with word reading and reading comprehension. Cortex, 49, 1363-1376. doi:10.1016/j.cortex.2012.05.005
    Goswami, U. (2015). Sensory theories of developmental dyslexia: Three challenges for research. Nature Review Neuroscience, 16, 43-54. doi:10.1038/nrn3836
    Goswami, U. (2018). A neural basis for phonological awareness? An oscillatory temporal-sampling perspective. Current Directions in Psychological Science, 1-8. doi.org/10.1177/0963721417727520 
    Gumenyuk, V., Korzyukov, O., Alho, K., Escera, C., and Näätänen, R. (2004). Effects of auditory distraction on electrophysiological brain activity and performance in children aged 8-13 years. Psychophysiology 41, 30-36. doi:10.1111/1469- 8986.00123
    Grube, M., & Griffiths, T. D. (2009). Metricality-enhanced temporal encoding and the subjective perception of rhythmic sequences. Cortex, 45, 72-79. doi:10.1016/j.cortex.2008.01.006

    Grube, M., Cooper, F. E., & Griffiths, T. D. (2013). Auditory temporal-regularity processing correlates with language and literacy skill in early adulthood. Cogn. Neurosci., 4, 225-230. doi: 10.1080/17588928.2013.825236

    Gregg, N. (2007). Underserved and unprepared: Postsecondary learning disabilities. Learning Disabilities: Research & Practice , 22, 219-228.
    Habib, M., Lardy, C., Desiles, T., Commeiras, C., Chobert, J., & Besson, M. (2016). Music and dyslexia: A new musical training method to improve reading and related disorders. Front. Psychol., 7(26). doi: 10.3389/fpsyg.2016.00026
    Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics. 65(2). 413-497. DOI: 10.1103/revmodphys.65.413.
    Hämäläinen, J., Rupp, A., Soltész, F., Szücs, D., & Goswami, U. (2012). Reduced phase locking to slow amplitude modulation in adults with dyslexia: An MEG study. NeuroImage, 59, 2952-2961.
    Hämäläinen, J. A., Salminen, H. K. & Leppänen, P. H. T. (2013). Basic auditory processing deficits in dyslexia: systematic review of the behavioral and event-related potential/field evidence. Journal of Learning Disabilities, 46, 413-427.
    Hämäläinen, J., Lohvansuu, K., & Lappänen, P. (2015). ERP to tones show differences between children with multiple risk factors for dyslexia and control children before the onset of formal reading instruction. International Journal of Psychophysiology, 95, 101-112. doi.org/10.1016/j.ijpsycho.2014.04.004
    Herdener, M., Humbel, T., Esposito, F., Habermeyer, B., Cattapan-Ludewig, K., & Seifritz, E., (2014). Jazz drummers recruit language-specific areas for the processing of rhythmic structure. Cerebral Cortex, 24, 836-843. doi:10.1093/cercor/bhs367
    Hakvoort, B., van der Leij, A., Maurits, N., Maassen, B., & van Zuijen, T. L. (2015). Basic auditory processing is related to familial risk, not to reading fluency: An ERP study. Cortex, 63, 90-103. doi.org/10.1016/j.cortex.2014.08.013
    Hong, T. H., Shuai, L., Frost, S., Landi, N., Pugh, K. R., & Shu, H. (2018). Cortical responses to Chinese phonemes in preschoolers predict their literacy skills at school age. Developmental Neuropsychology, 43(4), 356-369. doi.org/10.1080/87565641.2018.1439946
    Honing, H., Bouwer, F. L., & Háden, G. P. (2014). Perceiving temporal regularity in music: The role of auditory event-related potentials (ERPs) in probing beat perception. In H. Merchant and V. de Lafuente (eds.), Neurobiology of Interval Timing, Advances in Experimental Medicine and Biology (p. 305-323). New York: Springer Science+Business Media. DOI 10.1007/978-1-4939-1782-2_16

    Hornickel, J., Skoe, E., Nicol, T., Zecker, S., & Kraus, N. (2009). Subcortical differentiation of stop consonants relates to reading and speech-in-noise perception. Proc. Natl. Acad. Sci., 106, 13022-13027.
    Horvath, J., Winkler, I., & Bendixen, A. (2008). Do N1/MMN, P3a, and RON form a strongly coupled chain reflecting the three stages of auditory distraction? Biological Psychology, 79, 139-147. doi:10.1016/j.biopsycho.2008.04.001
    Huss, M., Verney, J. P., Fosker, T., Mead, N., & Goswami, U. (2011). Music, rhythm, rise time perception and developmental dyslexia: Perception of musical meter predicts reading and phonology. Cortex 47, 674-689. doi:10.1016/j.cortex.2010.07.010
    Hyde, K. L., Lerch, J., Norton A., Forgeard, M., Winner, E., Evans, A. C., & Schlaug, G. (2009). Musical training shapes structural brain development. The Journal of Neuroscience, 29(11), 3019-3025.
    Iversen, J. R., Patel, A. D., & Ohgushi, K. (2008). Perception of rhythmic grouping depends on auditory experience. The Journal of the Acoustical Society of America, 124(4), 2263-2271.
    Ireland, K., Parker, A., Foster, N., & Penhune, V. (2018). Rhythm and melody tasks for school-aged children with and without musical training: Age-equivalent scores and reliability. Front. Psychol. 9(426). doi: 10.3389/fpsyg.2018.00426
    Jaschke, A. C., Honing, H., & Scherder, E. J. A. (2018). Longitudinal analysis of music education on executive functions in primary school children. Front. Neurosci., 12(103). doi: 10.3389/fnins.2018.00103
    Jones, M. R. (2008). A dynamic approach to attending: New issues. J. Acoust. Soc. Am., 124, 2431-2431. doi:10.1121/1.4782501
    Jusczyk, P. W., Hirsh-Pasek, K., Nelson, D. G., Kennedy, L. J., Woodward, A., & Piwoz, J. (1992). Perception of acoustic correlates of major phrasal units by young infants. Cogn. Psychol., 24, 252-293. 。
    Kamiyama, K. S., & Okanoya, K. (2014). Synchronized tapping facilitates learning sound sequences as indexed by the P300. Frontiers in Human Neuroscience, 8(826). DOI:10.3389/fnhum.2014.00826
    Kihara, M., Hogan, A. M., Newton, C. R., Garrashi, H. H., Neville, B. R., & de Haan, M. (2010). Auditory and visual novelty processing in normally- developing Kenyan children. Clinical Neurophysiology, 121, 564-576. doi: 10.1016/j. clinph.2009.11.086
    Koelsch, S. (2009). Music-syntactic processing and auditory memory: Similarities and differences between ERAN and MMN. Psychophysiology, 46, 179-190.
    Knösche, T. R., Neuhaus, C., Haueisen, J., Alter, K., Maess, B., Witte, O. W., & Friederici, A. D. (2005). Perception of phrase structure in music. Human Brain Mapping, 24, 259-273. doi.org/10.1002/hbm.20088
    Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of auditory skills. Nat. Rev. Neurosci., 11, 599-605. doi: 10.1038/nrn2882
    Kraus, N., & Nicol, T. (2014). The cognitive auditory system. In R. Fay, & A. Popper (eds), Perspectives on auditory research (pp. 299-319). Heidleberg: Springer.
    Kraus, N., Slater, J., Thompson, E. C., Hornickel, J., Strait, D. L., Nicol, T., & White-Schwoch, T. (2014a). Music Enrichment Programs Improve the Neural Encoding. Journal of Neuroscience, 34(36), 11913-11918. DOI:10.1523/JNEUROSCI.1881-14.2014 
    Kraus, N., Hornickel, J., Strait, D. L., Slater, J., & Thompson, E. (2014b) Engagement in community music classes sparks neuroplasticity and language development in children from disadvantaged backgrounds. Frontier in Psychology, 5(1403). doi: 10.3389/fpsyg.2014.01403
    Kujala, T., & Leminen, M. (2017). Low-level neural auditory discrimination dysfunctions in specific language impairment-A review on mismatch negativity findings. Developmental Cognitive Neuroscience, 28, 65-75.
    Kunert, R., Willems, R. M., Casasanto, D., Patel, A. D., & Hagoort, P. (2015). Music and language syntax interact in Broca’s area: An fMRI study. PLoS ONE 10(11): e0141069. doi:10.1371/journal.pone.0141069
    Kurtzberg, D., Vaughan, H. G., Jr., Kreuzer, J. A., & Fliegler, K. Z. (1995). Developmental studies and clinical application of mismatch negativity: Problems and prospects. Ear and Hearing, 16, 105-117.
    Lachmann, T., Berti, S., Kujala, T. & Schröger, E. (2005). Diagnostic subgroups of developmental dyslexia have different deficits in neural processing of tones and phonemes. International Journal of Psychophysiology, 56, 105-120.

    Lamb, S. J., & Gregory, A. H. (1993). The relationship between music and reading in beginning readers. Educational Psychology, 13, 13-27.
    Large, E. W. (2000). On synchronizing movements to music. Hum. Mov. Sci., 19(4), 527-566. http://dx.doi.org/10.1016/S0167-9457(00)00026-9.
    Large, E. W., & Jones, M. R. (1999). The dynamics of attending: how people track time-varying events. Psychol. Rev., 106(1), 119-159. http://dx.doi.org/10.1037/0033-295X.106.1.119.
    Law, J. M., Vandermosten, M., Ghesquière, P., & Wouters, J. (2017). Predicting future reading problems based on pre-reading auditory measures: A longitudinal study of children with a familial risk of dyslexia. Frontier in Psychology, 8, 124. doi: 10.3389/fpsyg.2017.00124
    Lehongre, K., Ramus, F., Villiermet, N., Schwartz, D., & Giraud, A.-L. (2011). Alter low-gamma sampling in auditory cortex accounts for the three main facets of dyslexia. Neuron, 72, 1080-1090. DOI:10.1016/j.neuron.2011.11.002
    Lee, H.-Y., Sie, Y.-S., Chen, S.-C., & Cheng, M.-C. (2015). The music performance of children with and without dyslexia in Taiwan. Psychological Reports: Disabilities & Trauma, 116(1), 13-22.
    Lee, D. J., Jung, H., & Loui, P. (2019). Attention modulates electrophysiological responses to simultaneous music and language syntax processing. Brain Science, 9(305). doi:10.3390/brainsci9110305
    Lelo-de-Larrea-Mancera, E. S., Rodríguez-Agudelo, Y., & Solís-Vivanco, R. (2017). Musical rhythm and pitch: A differential effect on auditory dynamics as revealed by the N1/MMN/P3a complex. Neuropsychologia, 100, 44-50. http://dx.doi.org/10.1016/j.neuropsychologia.2017.04.001
    Lenc, T., Keller, P. E., Varlet, M., & Nozaradan, S. (2018). Neural tracking of the musical beat is enhanced by low-frequency sounds. PNAS, 115(32), 8221-8226. https://doi.org/10.1073/pnas.1801421115
    Leong, V., Hämäläinen, J., Soltesz, F., & Goswami, U. (2011). Rise time perception and detection of syllable stress in adults with developmental dyslexia. Journal of Memory and Language, 64(1), 59-73. doi.org/10.1016/j.jml.2010.09.003
    Leong, V., & Goswami, U. (2014). Impaired extraction of speech rhythm from temporal modulation patterns in speech in developmental dyslexia. Frontier in Human Neuroscience, 8(96), 1-14. doi: 10.3389/fnhum.2014.00096
    Leong, V., & Goswami, U. (2015). Acoustic-emergent phonology in the amplitude envelope of child-directed speech. PLOS ONE, 10(12), Article e0144411. doi:10.1371/journal.pone.0144411
    Leppänen, P.H.T., Tóth, D., Honbolygó, F. et al. (2019). Reproducibility of brain responses: High for speech perception, low for reading difficulties. Scientific Reports, 9(8487). doi:10.1038/s41598-019-41992-7
    Linnavalli, T., Putkinen, V., Huotilainen, M., & Tervaniemi, M. (2018). Maturation of speech-sound ERPs in 5-6-Year-Old Children: A longitudinal study. Front. Neurosci., 12(814). doi: 10.3389/fnins.2018.00814
    Luck, S. (1963). An introduction to the event-related potential technique (2nd Edition). U.S.: Massachusetts, MIT press.
    Lundertrae, K., & Thomson, J. M., (2017). Rhythm production at school entry as a predictor of poor reading and spelling at the end of first grade. Reading and Writing, 31(1), 215-237. doi.org/10.1007/s11145-017-9782-9
    Maess, B. Koelsch, S. Gunter, T. C., & Friederici, A. D. (2001). Musical syntax in processed in Broca’s area: An MEG study. Nature Neuroscience, 4, 540-545.
    Marques, C., Moreno, S., Castro, S. L., & Besson, M. (2007). Musicians detect pitch violation in a foreign language better than non-musicians: Behavioural and electrophysiological evidence. J. Cogn. Neurosci., 19, 1453-1463.
    Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods, 164(1), 177-190.
    Marie, C., Delogu, F., Lampis, G., Belardinelli, M. O., & Besson, M. (2011a). Influence of musical expertise on segmental and tonal processing in Mandarin Chinese. J. Cogn. Neurosci., 23(10), 2701-2715. doi: 10.1162/jocn.2010.21585
    Marie, C., Magne, C., & Besson, M. (2011b). Musicians and the metric structure of words. J. Cogn. Neurosci., 23, 294-305.
    Marie, C., Kujala, T., Kujala, M. (2012). Musical and linguistic expertise influence preattentive and attentive processing of non-speech sounds. Cortex, 48, 447-457. doi: 10.1016/j.cortex. 2010.11.006
    Maurer, U., Bucher, K., Brem, S. & Brandeis, D. (2003). Altered responses to tone and phoneme mismatch in kindergartners at familial dyslexia risk. Neuroreport, 14, 2245-2250.

    McGregor, K. K., Langenfeld, N., van Horne, S., Oleson, J., Anson, M., & Jacobson, W. (2016). The university experiences of students with learning disabilities. Learning Disabilities Research & Practice, 31(2), 90-102.
    McBridge-Chang, C., Tong, X., Shu, H., Wong, A. M. Y., Leung, K.-W., & Tardif, T. (2008). Syllable, phoneme and tone: Psycholinguistic units in early Chinese and English word recognition. Scientific Studies of Reading, 12, 171-194.
    Merrill, J., Sammler, D., Bangert, M., Goldhahn, D., Lohmann, G., Turner, R., & Friederici, A.D. (2012). Perception of words and pitch patterns in song and speech. Front. Psychol., 3, 76. doi:10.3389/fpsyg.2012.00076
    Merchant, H., Grahn, J. A., Trainor, L. J., Rohrmeier, M. A., & Fitch, W. T. (2015). Finding the beat: A neural perspective across humans and non-human primates. Philos. Trans. R. Soc. Lond. Ser. B. Biol. Sci., 370(1664), 20140093. http://dx.doi.org/10.1098/rstb.2014.0093.
    Moreno, S., & Besson, M. (2006). Musical training and language-related brain electrical activity in children. Psychophysiology, 43, 287-291. doi: 10.1111/j.1469-8986.2006.00401.x
    Moreno, S., Marques, C., Santos, A., Santos, M., Castro, S. L., & Besson, M. (2009). Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity. Cereb. Cortex, 19, 712–723. doi: 10.1093/cercor/bhn120
    Munka, L., & Berti, S. (2006). Examining task-dependencies of different attentional processing as reflected in the P3a and reorienting negativity components of the human event-related brain potential. Neuroscience Letters, 396, 177-181.
    Münte, T. F., Altenmüller, E., & Jäncke, L. (2002). The musician’s brain as a model of neuroplasticity. Nat. Neurosci., 3, 473-478
    Musacchia, G., Sams, M., Skoe, E., & Kraus, N. (2007). Musicians have enhanced subcortical auditory and audiovisual processing of speech and music, Proceedings of the National Academy of Sciences, 104 (40), 15894-15898. DOI:10.1073/pnas.0701498104
    Nan, Y., Liu, L., Gesier, E., Shu, H., Gong C. C., Dong, Q., Gabrieli, D. E., & Desimone, R. (2018). Piano training enhances the neural processing of pitch and improves speech perception in Mandarin-speaking children. PNAS., 115(28), E6630-E6639. doi.org/10.1073/pnas.1808412115
    Näätänen, R. N., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin. Neurophysiol., 118(12), 2544-2590. doi.org/10.1016/j.clinph.2007.04.026.
    Neuhoff, N., Bruder, J., Bartling, J., Warnke, A., Remschmidt, H., Müller-Myhsok, B., & Schulte-Körne, G. (2012). Evidence for the late MMN as a neurophysiological endophenotype for dyslexia. PloS One, 7(5), e34909. doi:10.1371/journal.pone.0034909
    Nouwen, M., Schepers, S., Mouws, K., Kosten, N., & Duysburgh, P. (2016). Design an educational music game: What if children were calling the tune? International Journal of Child-Computer Interaction, 9, 20-32.
    Nozaradan, S., Peretz, I., Missal, M., Mouraux, A. (2011). Tagging the neuronal entrainment to beat and meter. J Neurosci. 31:10234-10240.
    Otterbein, S., Abel, C., Heinemann, L. V., Kaiser, J., & Schmidt-Kassow, M. (2012). P3b reflects periodicity in linguistic sequences. PLoS One, 7, e51419. doi: 10.1371/journal.pone.0051419

    Overy, K., Nicolson, R. I., Fawcett, A. J., & Clarke, E. F. (2003). Dyslexia and music: Measuring musical timing skills. Dyslexia, 9, 18-36. DOI: 10.1002/dys.233
    Ozernov-Palchik, O., & Patel, A. D. (2018). Musical rhythm and reading development: Does beat processing matter? Annals of the New York Academy of Sciences, Special Issue: The Neurosciences and Music VI, 1423(1), 166-175. doi.org/10.1111/nyas.13853
    Patel, A. D. (2003). Language, music, syntax and the brain. Nature Neuroscience, 6, 674-681.
    Patel, A.D. 2011. Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Frontier in Psychology, 2(142). doi:10.3389/fpsyg.2011.00142
    Patel, A. D. (2012). The OPERA hypothesis: Assumptions and clarifications. Annals of the New York Academy of Science, 1252, 124-128.
    Parbery-Clark, A., Tierney, A., Strait, D. L., & Kraus, N. (2012). Musician shave fine-tuned neural distinction of speech syllables. Neuroscience, 219, 111-119.
    Pavarini, S., Brigola, A. G., Luchesi, B. M., Souza, É. N., Rossetti, E. S., Fraga, F. J., … Ottaviani, A. C. (2018). On the use of the P300 as a tool for cognitive processing assessment in healthy aging: A review. Dementia & neuropsychologia, 12(1), 1-11. doi:10.1590/1980-57642018dn12-010001
    Peretz, I., & Zatorre, R.J. (2005). Brain organization for music processing. Annual Review Psychology, 56, 89-114, 2005.
    Peretz, I. (2006). The nature of music from a biological perspective. Cognition 100, 1-32. doi:10.1016/j.cognition.2005.11.004
    Peretz, I. (2009). Music, language and modularity framed in action. Psychologica Belggica, 49, 157-175.
    Peretz, I., Vuvan, D., Lagrois, M.-É., & Armony, J. L. (2015). Neural overlap in processing music and speech. Philosophy Transactions of Royal Society B, 370, 20140090. http://dx.doi.org/10.1098/rstb.2014.0090
    Peppler, K., Downton, M., Lindsay, E., & Hay, K. (2011). The Nirvana effect: Tapping video game to mediate music learning and interest. International Journal of Learning and Media, 3(1), 41-59.
    Polich, J. (1987). Task difficulty, probability, and inter-stimulus interval as determinants of P300 from auditory stimuli. Electroencephalography and Clinical Neurophysiology: Evoked Potentials, 68(4), 311-320.
    Polich, J., & Heine, M. R. D. (1996). P300 topography and modality effects from a single-stimulus paradigm. Psychophysiology, 33(6), 747-752.
    Polich, J. (2004). Clinical application of the P300 event-related brain potential. Physical Medicine and Rehabilitation Clinics of North America, 15, 133-161.
    Polich, J., (2007). Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol., 118(10), 2128-2148. http://dx.doi.org/10.1016/j.clinph.2007.04.019.
    Power, A. J., Mead,N., Barnes, L., & Goswami, U. (2013). Neural entrainment to rhythmic speech in children with developmental dyslexia. Frontiers in Human Neuroscience, 7(777), 1-19. DOI:10.3389/fnhum.2013.00777
    Pitt, M. A., & Samuel, A. G. (1990). The use of rhythm in attending to speech. J. Exp. Psychol., 16, 564–573. doi: 10.1037/0096-1523.16.3.564
    Pugh, K., & Verhoeven, L. (2018). Introduction to this special issue: Dyslexia across languages and writing systems. Scientific Studies of Reading, 22(1), 1-6. DOI: 10.1080/10888438.2017.1390668
    Putkinen, V., Niinikuru, R., Lipsanen, J., Tervaniemi, M., & Huotilainen, M. (2012). Fast measurement of auditory event-related potential profiles in 2-3-year-olds. Developmental Neuropsychology. 37, 51-75. doi: 10.1080/87565641.2011.61 5873
    Putkinen, V., Tervaniemi, M., Saarikivi, K., Ojala, P., & Huotilainen, M. (2014a). Enhanced development of auditory change detection in musically trained school-aged children: A longitudinal event-related potential study. Developmental Science, 17, 282-297. doi: 10.1111/desc.12109
    Putkinen, V., Tervaniemi, M., Saarikivi, K., de Vent, N., & Huotilainen, M. (2014b). Investigating the effects of musical training on functional brain development with a novel melody MMN paradigm. Neurobiology of Learning and Memory, 110, 8-15. doi.org/10.1016/j.nlm.2014.01.007
    Putkinen, V., Huotilainen, M., & Tervaniemi, M. (2019). Neural encoding of pitch direction is enhanced in musically trained children and is related to reading skills. Front. Psychol. 10(1475). doi: 10.3389/fpsyg.2019.01475
    Quené, H., & Port, R. F. (2005). Effects of timing regularity and metrical expectancy on spoken-word perception. Phonetica, 62(1), 1-13. doi:10.1159/000087222

    Ramus, F., Hauser, M. D., Miller, C., Morris, D., & Mehler, J. (2000). Language discrimination by human newborns and by cotton-top tamarin monkeys. Science, 288(5464), 349-351.
    Rinne, T., Särkkä, A., Degerman, A., Schröger, E., & Alho, K. (2006). Two separate mechanisms underlie auditory change detection and involuntary control of attention. Brain Res., 1077(1), 135-143.
    Rothermich, K., Schmidt-Kassow, M., Schwartze, M., & Kotz, S. A. (2010). Event-related potential responses to metric violations: Rules versus meaning. Neuro Report, 21(8), 580-584.
    Ruhnau, P., Wetzel, N., Widmann, A., and Schröger, E. (2010). The modulation of auditory novelty processing by working memory load in school age children and adults: A combined behavioral and event-related potential study. BMC Neuroscience. 11(126). doi: 10.1186/1471-2202-11-126
    Schellenberg, E. G. (2004). Music lessons enhance IQ. Psychology Science, 15, 511-514. DOI:10.1111/j.0956-7976.2004.00711.x
    Schellenberg, E. G. (2019). Correlation = Causation? Music training, psychology, and neuroscience. Psychology of Aesthetics, Creativity, and the Arts. Advance online publication. http://dx.doi.org/10.1037/aca0000263
    Schön, D., Magne, C., & Besson, M. (2004). The music of speech: music facilitates pitch processing in language. Psychophysiology, 41, 341-349.
    Schön, D., & Tillmann, B. (2015). Short- and long-term rhythmic intervention: Perspectives for language rehabilitation. Annals of the New York Academy of Science, 1337, 32-39. doi: 10.1111/nyas.12635
    Schulte-Körne, G., Deimel, W., Bartling, J., & Remschmidt, H. (2001). Speech perception deficit in dyslexic adults as measured by mismatch negativity (MMN). International Journal of Psychophisiology, 40, 77-87.
    Serrallach, B., Groß, C., Bernhofs, V., Engelmann, D., Benner, J., & Guendert, N., et al. (2016). Neural biomarkers for dyslexia, ADHD and ADD in the auditory cortex of children. Front. Neurosci., 10(324). doi: 10.3389/fnins.2016.00324
    Shtyrov, Y., Smith, M. L., Horner, A. J., Henson, R., Nathan, P. J., Bullmore, E. T., & Pulvermüller, F. (2012). Attention to language: Novel MEG paradigm for registering involuntary language processing in the brain. Neuropsychologia, 50(11), 2605-2616. doi.org/10.1016/j.neuropsychologia.2012.07.012.
    Sidiras, C., Iliadou, V.V., Nimatoudis, I., Grube, M., Griffiths, T., & Bamiou, D.-E. (2019). Deficits in auditory rhythm perception in children with auditory processing disorder are unrelated to attention. Frontier in Neuroscience, 13(953). doi:10.3389/fnins.2019.00953
    Skoe, E., Nicol, T., & Kraus, N. (2011). Cross-phaseogram: Objective neural index of speech sound differentiation. J. Neurosci. Methods, 196, 308-317.
    Slevc, L. R., Rosenberg, J. C., & Patel, A. D. (2009). Making psycholinguistics musical: Self-paced reading time evidence for shared processing of linguistic and musical syntax. Psychon. Bull Rev., 16, 374–381. doi: 10.3758/16.2.374
    Smith, M. R., Cutler, A., Butterfield, S., & Nimmo-Smith, I. (1989). The perception of rhythm and word boundaries in noise-masked speech. J. Speech Hear. Res., 32, 912–920. doi: 10.1044/jshr.3204.912
    Snowling, M. J. (2014). Dyslexia: A language learning impairment. Journal of British Academy, 2, 43-58. DOI 10.5871/jba/002.043
    Squires, N. K., Squires, K. C., & Hillyard, S. A. (1975). Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalography and Clinical Neurophysiology, 38(4), 387-401.
    Stein, J. (2019). The current status of the magnocellular theory of developmental dyslexia, Neuropsychologia, 130, 66-77. doi.org/10.1016/j.neuropsychologia.2018.03.022.
    Steinbrink, C., Knigge, J., Mannhaupt, G., Sallat, S., & Werkle, A. (2019) Are temporal and tonal musical skills related to phonological awareness and literacy skills? Evidence from two cross-sectional studies with children from different age groups. Frontier in Psychology, 10(805). doi: 10.3389/fpsyg.2019.00805
    Strait, D. L., Parbery-Clark, A., Hittner, E. & Kraus, N. (2012). Musical training during early childhood enhances the neural encoding of speech in noise. Brain and Language, 123, 191-201.
    Strait, D. L., O’Connell, S., Parbery-Clark, A., & Kraus, N. (2013). Musicians’ enhanced neural differentiation of speech sounds arises early in life: Developmental evidence from ages three to thirty. Cereb. Cortex., 24(9), 2512-21. doi: 10.1093/cercor/bht103.
    Strait, D. L., Skoe, E., Kraus, N., & Ashley, R. (2009). Musical experience and neural efficiency: Effects of training on subcortical processing of vocal expressions of emotion. Eur. J. Neurosci., 29, 661-668.
    Sutton, S., Braren, M., Zubin, J. & John, E. R. (1965). Evoked-potential correlates of stimulus uncertainly. Science, 150(3700), 1187-1188.
    Suppanen, E., Huotilainen, M., & Ylinen, S. (2019). Rhythmic structure facilitates learning from auditory input in newborn infants. Infant Behavior and Development, 57. doi.org/10.1016/j.infbeh.2019.101346
    Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities in children. Brain Lang., 9, 182-198 10.1016/0093-934X(80)90139-X 
    Tallal, P., Miller, S. L., Bedi, G., Byma, G., Wang, X., Nagarajan, S. S., … Merzenich, M. M. (1996). Language comprehension in language-learning impaired children improved with acoustically modified speech. Science, 271(5245), 81-84. doi:10.1126/science.271.5245.81 
    Tallal, P., & Gaab, N. (2006). Dynamic auditory processing, musical experience and language development. Trends in Neurosciences, 29, 382-390. doi:10.1016/j.tins.2006.06.003
    Tervaniemi, M. Kujala, A., Alho, K., Virtanen, J., Ilmoniemi, R. J., & Näätänen, R. (1999). Funcational specialization of the human auditory cortex in processing phonetic and music sounds: A Magnetoencephlographic (MEG) study. Neuroimage, 9, 330-336.
    Thaut, M. H., McIntosh, G. C., Rice, R. R., Miller, R. A., Rathbun, J., & Brault, J. M. (1996). Rhythmic auditory stimulation in gait training for Parkinson’s disease patients. Mov. Disord., 11, 193-200. doi: 10.1002/mds. 870110213
    Thaut, M. H., & Abiru, M. (2010). Rhythmic auditory stimulation in rehabilitation of movement disorders: a review of current research. Music Percept., 27, 263–269. doi: 10.1525/mp.2010.27.4.263
    Thomson, J. M., Fryer, B., Maltby, J., & Goswami, U. (2006). Auditory and motor rhythm awareness in adults with dyslexia. J. Res. Read., 29(3), 334-348.
    Thomson, J. M., & Goswami, U. (2008). Rhythmic processing in children with developmental dyslexia: Auditory and motor rhythms link to reading and spelling. J. Physiol. Paris., 102(1-3), 120-129.
    Tierney, A. T., & Kraus, N. (2013a). The ability to tap to a beat relates to cognitive, linguistic and perceptual skills. Brain Lang., 124(3), 225-231. doi: 10.1016/j.bandl. 2012.12.014
    Tierney, A. T., & Kraus, N. (2013b). The ability to move to a beat is linked to the consistency of neural responses to sound. J. Neurosci., 33(38), 14981–14988.
    Tierney, A., Krizman, J., Skoe, E., Johnston, K., & Kraus, N. (2013). High school music classes enhance the neural processing of speech. Frontier in Psychology, 4:855. doi: 10.3389/fpsyg.2013.00855
    Tierney, A. T., Krizman, J., & Kraus, N. (2015). Music training alters the course of adolescent auditory development. PNAS, 112, 10062-10067. https://doi.org/10.1073/pnas.1505114112
    Tunmer, W. E., & Hoover, W. A. (1992). Cognitive and linguistic factors in learning to read. In P. B. Gough, L. C. Ehri, & R. Treiman (Eds.), Reading acquisition (p. 175–214). Lawrence Erlbaum Associates, Inc.
    Vellutino, F. R., Fletcher, J. M., Snowling, M. J., & Scanlon, D. M. (2004). Specific reading disabilities (dyslexia): what have we learned in the past four decades? Journal of Child Psychology and Psychiatry, 45(1), 2-40.
    Vuust P., Roepstorff A., Wallentin M., Mouridsen K., & Ostergaard L. (2006). It don't mean a thing. Keeping the rhythm during polyrhythmic tension, activates language areas (BA47). Neuroimage, 31, 832–84110.1016/j.neuroimage.2005.12.037
    Wallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C., & Vuust, P. (2010). The musical ear test, a new reliable test for measuring musical competence. Learning and Individual Differences, 20, 188-196. doi:10.1016/j.lindif.2010.02.004
    Wang, H.-L. S., Huss, M., Hämäläinen, J. A., & Goswami, U. (2012). Basic auditory processing and developmental dyslexia in Chinese. Reading and Writing, 25, 509–536.
    Wang, L.-C., Liu, D., Chung, K. K.-H., & Yang, H.-M. (2017). Development of lexical tone awareness in Chinese children with and without dyslexia. Contemporary Educational Psychology, 49, 203-214.
    Winkler, I., Háden, G. P., Ladinig, O. L., Sziller, I., & Hoing, H. (2009). Newborn infants detect the beat in music. Proceedings of the National Academy of Sciences, 106(7), 2468-2471.
    Wolff, P. H. (2002). Timing precision and rhythm in developmental dyslexia. Reading and Writing: An Interdisciplinary Journal, 15, 179-206.
    Wolf, M. (2018). Reader, come home: The reading brain in a digital world. USA: HarperCollins.
    Woodruff Carr, K. W., White-Schwoch, T., Tierney, A. T., Strait, D. L., & Kraus, N. (2014). Beat synchronization predicts neural speech encoding and reading readiness in preschool. PNAS, 111(40), 14559-14564, doi: 10.1073/pnas.1406219111
    Wong, P. C., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nat. Neurosci., 10, 420-422.
    White-Schwoch, T., & Kraus, N. (2013) Physiologic discrimination of stop consonants relates to phonological skills in pre-readers: A biomarker for subsequent reading ability? Front. Hum. Neurosci., 7(899). doi: 10.3389/fnhum.2013.00899
    Yang, M.-T., Hsu, C.-H., Yeh, P.-W., Lee, W.-T., Liang, J.-S., Fu, W.-M., & Lee, C.-Y. (2015). Attention deficits revealed by passive auditory change detection for pure tones and lexical tones in ADHD children. Frontier in Human Neuroscience, 9(470). doi: 10.3389/fnhum.2015.00470
    Zatorre, R. J., Belin, P., & Penhune, V. B. (2002). Structure and function of auditory cortex: Music and speech. Trends Cognitive Sciences, 6, 37-46.
    Zuk, J., Ozernov-Palchik, O., Kim, H., Lakshminarayanan, K., Gabrieli, J. D., Tallal, P., & Gaab, N. (2013). Enhanced syllable discrimination thresholds in musicians. PLoS One, 8, e80546. doi.org/10.1371/journal.pone.0080546
    Ziegler, J. C., & Goswami, U. (2005). Reading acquisition, developmental dyslexia, and skilled reading across languages: A psycholinguistic grain size theory. Psychological Bulletin, 131, 3-29. http://dx.doi.org/10.1037/0033-2909.131.1.3

    下載圖示
    QR CODE