研究生: |
李雨倢 Lee, Yu-Jay |
---|---|
論文名稱: |
適當硒濃度對Cisplatin治療的三陰性乳癌MDA-MB-231細胞所誘導之鐵依賴型細胞死亡的效果 Effect of Adequate Level of Selenium on Ferroptosis in Breast Cancer Cell Line MDA-MB-231 Treated with Cisplatin |
指導教授: |
蘇純立
Su, Chun-Li |
學位類別: |
碩士 Master |
系所名稱: |
營養科學碩士學位學程 Graduate Program of Nutrition Science |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 硒 、順鉑 、乳癌 、鐵依賴型細胞死亡 、三陰性乳癌 |
英文關鍵詞: | Selenium, Cisplatin, Breast cancer, Ferroptosis, Triple-negative breast cancer |
DOI URL: | http://doi.org/10.6345/NTNU202000990 |
論文種類: | 學術論文 |
相關次數: | 點閱:419 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硒(Se)為人體所需的必需營養素且被認為可預防癌症。乳癌在全球女性癌症發生率中位居第一位,患者血清Se濃度會隨著腫瘤之惡性轉移而顯著降低。Cisplatin為廣泛使用於惡性癌症的化療藥物,臨床上的使用經常伴隨凋亡性阻抗。本研究探討礦物質Se與Cisplatin同時給予對人類三陰性乳癌細胞MDA-MB-231之效用,並探討是否透過非凋亡性鐵依賴型細胞死亡(Ferroptosis)提升Cisplatin之細胞毒殺能力。結果發現,生存率較低的乳癌患者傾向胞內自由鐵之聚積,且預後較差的三陰性乳癌細胞MDA-MB-231誘發Ferroptosis之現象較管腔A型乳癌細胞MCF-7明顯。礦物質Se抑制MDA-MB-231細胞生長的效果較Zn及Fe佳,Se可提升胞內自由鐵,並在合併Cisplatin後具協同作用。Se透過提升Cisplatin處理之MDA-MB-231細胞胞內自由鐵之聚集及Lipid ROS的產生來驅動Ferroptosis,增強Cisplatin之細胞毒殺能力。同時,Se與Cisplatin的合併給予導致Nrf2下游蛋白HO-1及FTH1的表現上調。此外,Se 2 μM在低層次及高層次硒蛋白的mRNA及蛋白表現皆達飽和,故為「適當硒濃度」。綜上所述,適當的Se濃度可透過Ferroptosis改善Cisplatin治療之三陰性乳癌細胞MDA-MB-231的效果,顯示癌症患者礦物質Se狀態對於抗癌藥物之治療效果的重要性。
Selenium (Se) is an essential nutrient and has a wide health benefit, including cancer prevention. Breast cancer is the first in the global incidence of female cancer. The Se level of breast cancer patient is significantly lowered with the tumor malignant metastasis. Cisplatin is a widely used chemotherapy drug for malignant cancer. Unfortunately, many cancers often develop resistance in response to cisplatin treatment. In the present study, human triple-negative breast cancer cell line MDA-MB-231 was used to explore whether Se is feasible to enhance the cytotoxic effect of cisplatin through ferroptosis, a non-apoptotic cell death. The results show that breast cancer patients with poor survival tend to accumulate intracellular free iron. Triple-negative breast cancer MDA-MB-231 cells were more susceptible to ferroptosis than luminal A breast cancer MCF-7 cells. Compared to Zn and Fe, the growth inhibition was significantly induced by Se in MDA-MB-231 cells. In addition, Se enhanced the cytotoxic of Cisplatin and produced a synergistic effect by elevating labile iron pool and lipid ROS accumulation to trigger ferroptosis in cisplatin-treated MDA-MB-231 cells. In parallel with the observation, up-regulation of FTH1 and HO-1 protein expressions was exhibited. Both high- and low-hierarchy selenoproteins were saturated at 2 μM of Se, suggesting that the experimental condition was at the ‘‘adequate level of Se’’. Overall, adequate level of Se improves the effect of cisplatin treatment in MDA-MB-231 cells through ferroptosis. In nutritional perspectives, maintaining mineral Se status in cancer patients is critical to receive benefits from treatment of anti-cancer drug.
Amable, L. (2016). Cisplatin resistance and opportunities for precision medicine. Pharmacol Res, 106, 27-36.
Arany, I., & Safirstein, R. L. (2003). Cisplatin nephrotoxicity. Seminars in Nephrology, 23(5), 460-464.
Ashton, K., Hooper, L., Harvey, L. J., Hurst, R., Casgrain, A., & Fairweather-Tait, S. J. (2009). Methods of assessment of selenium status in humans: a systematic review. Am J Clin Nutr, 89(6), 2025S-2039S.
Baldew, G. S., Mol, J. G. J., de Kanter, F. J. J., Baar, B. V., de Goeu, J. J. M., & Vermeulen, N. P. E. (1911). The Mechanism of Interaction Between Cisplatin and Selenite. Biochem Pharmacol, 41, 1429-1437.
Bleys, J., Navas-Acien, A., & Guallar, E. (2008). Serum Selenium Levels and All-Cause, Cancer, and Cardiovascular Mortality Among US Adults. JAMA Intern Med, 168(4).
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 68(6), 394-424.
Brodin, O., Eksborg, S., Wallenberg, M., Asker-Hagelberg, C., Larsen, E. H., Mohlkert, D., et al. (2015). Pharmacokinetics and Toxicity of Sodium Selenite in the Treatment of Patients with Carcinoma in a Phase I Clinical Trial: The SECAR Study. Nutrients, 7(6), 4978-4994.
Caffrey, P. B., & Frenkel, G. D. (2000). Selenium compounds prevent the induction of drug resistance by cisplatin in human ovarian tumor xenografts in vivo. Anticancer res., 46, 74-78.
Camargo, S. M. R., Francescato, H. D. C., Lavrador, M. A. S., & Bianchi, M. L. P. (2001). Oral Administration of Sodium Selenite Minimizes Cisplatin Toxicity on Proximal Tubules of Rats. Biol Trace Elem Res, 83, 251-262.
Clark, L. C., Combs, G. F., Turnbull, B. W., Slate, E. H., Chalker, D. K., Chow, J., et al. (1996). Effects of Selenium Supplementation for Cancer Prevention in Patients With Carcinoma of the Skin. JAMA, 276(24), 1957-1963.
Dasari, S., & Tchounwou, P. B. (2014). Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol, 740, 364-378.
Dixon, Scott J., Lemberg, Kathryn M., Lamprecht, Michael R., Skouta, R., Zaitsev, Eleina M., Gleason, Caroline E., et al. (2012). Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149(5), 1060-1072.
Dixon, S. J., & Stockwell, B. R. (2019). The Hallmarks of Ferroptosis. Annual Review of Cancer Biology, 3(1), 35-54.
Dixon, S. J., Winter, G. E., Musavi, L. S., Lee, E. D., Snijder, B., Rebsamen, M., et al. (2015). Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death. ACS Chem Biol, 10(7), 1604-1609.
Doll, S., Proneth, B., Tyurina, Y. Y., Panzilius, E., Kobayashi, S., Ingold, I., et al. (2017). ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol, 13(1), 91-98.
Gao, M., Monian, P., Quadri, N., Ramasamy, R., & Jiang, X. (2015). Glutaminolysis and Transferrin Regulate Ferroptosis. Mol Cell, 59(2), 298-308.
Gaschler, M. M., & Stockwell, B. R. (2017). Lipid peroxidation in cell death. Biochem Biophys Res Commun, 482(3), 419-425.
Guo, J., Xu, B., Han, Q., Zhou, H., Xia, Y., Gong, C., et al. (2018). Ferroptosis: A Novel Anti-tumor Action for Cisplatin. Cancer Res Treat, 50(2), 445-460.
Hao, S., Liang, B., Huang, Q., Dong, S., Wu, Z., He, W., et al. (2018). Metabolic networks in ferroptosis. Oncol Lett, 15(4), 5405-5411.
Hashemi, S.-M., Sadeghi, M., Vahedi Tabas, A., Bouya, S., Danesh, H. A., Khazaei, A., et al. (2017). Serum Levels of Selenium and Zinc in Patients with Breast Cancer: A Case-Control Study. International Journal of Cancer Management, 10(12).
Hastak, K., Alli, E., & Ford, J. M. (2010). Synergistic chemosensitivity of triple-negative breast cancer cell lines to poly(ADP-Ribose) polymerase inhibition, gemcitabine, and cisplatin. Cancer Res, 70(20), 7970-7980.
Isakoff, S. J., Mayer, E. L., He, L., Traina, T. A., Carey, L. A., Krag, K. J., et al. (2015). TBCRC009: A Multicenter Phase II Clinical Trial of Platinum Monotherapy With Biomarker Assessment in Metastatic Triple-Negative Breast Cancer. J Clin Oncol, 33(17), 1902-1909.
Kagan, V. E., Mao, G., Qu, F., Angeli, J. P., Doll, S., Croix, C. S., et al. (2016). Oxidized arachidonic and adrenic pes navigate cells to ferroptosis. Nat Chem Biol, 13(1), 81-90.
Kaminska, M., Ciszewski, T., Lopacka-Szatan, K., Miotla, P., & Staroslawska, E. (2015). Breast cancer risk factors. Prz Menopauzalny, 14(3), 196-202.
Khosravi-Shahi, P., Cabezon-Gutierrez, L., & Custodio-Cabello, S. (2018). Metastatic triple negative breast cancer: Optimizing treatment options, new and emerging targeted therapies. Asia Pac J Clin Oncol, 14(1), 32-39.
Kryukov, G. V., Castellano, S., Novoselov, S. V., Lobanov, A. V., Zehtab, O., Guigo´, R., et al. (2003). Characterization of mammalian selenoproteomes. Science, 300, 1439-1433.
Meplan, C., & Hesketh, J. (2014). Selenium and cancer: a story that should not be forgotten-insights from genomics. Cancer Treat Res, 159, 145-166.
Metanis, N., & Hilvert, D. (2014). Natural and synthetic selenoproteins. Curr Opin Chem Biol, 22, 27-34.
Milde, D., Altmannova, K., Vyslouzil, K., & Stuzka, V. (2005). Trace Element Levels in Blood Serum and Colon Tissue in Colorectal Cancer. Chem, 59(3), 157-160.
Pinnix, Z. K., Miller, L. D., Wang, W., D'Agostino, R., Jr., Kute, T., Willingham, M. C., et al. (2010). Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med, 2(43), 43ra56.
Prabhu, K. S., & Lei, X. G. (2016). Selenium. Adv Nutr, 7(2), 415-417.
Rajkumar, P., Mathew, B. S., Das, S., Isaiah, R., John, S., Prabha, R., et al. (2016). Cisplatin Concentrations in Long and Short Duration Infusion: Implications for the Optimal Time of Radiation Delivery. J Clin Diagn Res, 10(7), 01-04.
Rayman, M. P. (2012). Selenium and human health. The Lancet, 379(9822), 1256-1268.
Rocourt, C. R., & Cheng, W. H. (2013). Selenium supranutrition: are the potential benefits of chemoprevention outweighed by the promotion of diabetes and insulin resistance? Nutrients, 5(4), 1349-1365.
Saleh, S. A. K., Adly, H. M., Abdelkhaliq, A. A., & Nassir, A. M. (2020). Serum Levels of Selenium, Zinc, Copper, Manganese, and Iron in Prostate Cancer Patients. Curr Urol, 14(1), 44-49.
Stockwell, B. R., Friedmann Angeli, J. P., Bayir, H., Bush, A. I., Conrad, M., Dixon, S. J., et al. (2017). Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171(2), 273-285.
Su, Y., Zhao, B., Zhou, L., Zhang, Z., Shen, Y., Lv, H., et al. (2020). Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett, 483, 127-136. doi:10.1016/j.canlet.2020.02.015
Torti, S. V., & Torti, F. M. (2011). Ironing out cancer. Cancer Res, 71(5), 1511-1514.
Torti, S. V., & Torti, F. M. (2013). Iron and cancer: more ore to be mined. Nat Rev Cancer, 13(5), 342-355.
Wang, D., & Lippard, S. J. (2005). Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov, 4(4), 307-320.
Watrach, A. M., Milner, J. A., Watrach, M. A., & Poirier, K. A. (1984). Inhition of Human Breast Cancer Cells by Selenium Cancer Lett., 25, 41-47.