簡易檢索 / 詳目顯示

研究生: Nair, Stephen
Nair, Stephen
論文名稱: 熱退火對MoS2薄膜表面形貌和螢光特性的效應
Annealing effect on morphology and Photoluminescence of MoS2 thin films
指導教授: 駱芳鈺
Lo, Fang-Yuh
口試委員: 駱芳鈺 洪振湧 林文欽
口試日期: 2021/07/27
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 47
英文關鍵詞: MoS2, Thin-film, Quantum Dots, Annealing, Photoluminescence
研究方法: 實驗設計法準實驗設計法Experimental research
DOI URL: http://doi.org/10.6345/NTNU202101684
論文種類: 學術論文
相關次數: 點閱:201下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Molybdenum disulfide (MoS₂) has attracted attention due to its unique electronic and optical properties from bulk indirect bandgap (~1.2 eV) to direct bandgap (~1.8 eV) in monolayer. The MoS₂ thin films were fabricated using the three-zone chemical vapor deposition (CVD) in a quasi-closed crucible. Effect of thermal annealing on MoS₂ thin films and formation of MoS₂ quantum dots (QDs) were investigated by Raman-scattering and photoluminescence (PL) spectroscopy, as well as atomic force microscopy (AFM) and polarization dependent PL.

Topography characterization showed that MoS₂ QDs and holes were formed from post thermal annealing for 0.5 hours at 350°C in the air, due to the formation of sulfur deficiencies at the MoS₂ film. The diameter of the QDs range from 10 to 30 nm, and as the annealing time was extended, the size and the number of QDs increased. A slight increase in MoS₂ thin film thickness can be observed based from the Raman shift difference between A1g and E_2g^1 peaks. Subsequent 30-minute thermal annealing at 350°C in the air led to both further QD growth and layer thinning. The MoS2 thin films were completely evaporated after 4 hours of annealing. PL spectra showed that the A exciton emission line red-shifted slightly and the intensity increased with annealing duration while the peak width remained mostly unchanged. The redshift is due to formation of S deficiency; increase in intensity is attributed to QD formation. Moreover, polarization-resolved PL spectra showed no trend as annealing time was increased

Abstract i Chapter 1. Introduction 1.1 Molybdenum di-sulfide 3 1.2 Growth of MoS2 4 1.3 Raman Scattering in MoS2 6 1.4 Photoluminescence in MoS2 7 Chapter 2. Theory 2.1 Atomic Force Microscopy 9 2.1.1 Force-distance curve 9 2.1.2 Tapping-mode 9 2.1.3 Contact mode 11 2.1.4 non-Contact mode 11 2.2 Raman Scattering 11 2.3 Photoluminescence 14 2.3.1 Inter-band transitions 15 2.3.2 Free to bound transition 16 2.3.3 Donor-Acceptor pair recombination 16 2.3.4 non-Radiative transition 16 2.3.5 Free exciton transition 17 2.4 Polarization Dependent Photoluminescence 18 Chapter 3. Experimental Details 3.1 CVD 19 3.2Topography 20 3.3 Polarization dependent PL 20 3.4 Annealing 21 Chapter 4. Results and Discussion 4.1 Topography 22 4.1.1 Series-1 22 4.1.2 Series-2 26 4.1.3 Series-3 29 4.2 Raman scattering spectroscopy 30 4.2.1 Series-1 30 4.2.2 Series-2 31 4.2.3 Series-3 32 4.3 Photoluminescence spectroscopy 33 4.3.1 Series-1 33 4.3.2 Series-2 34 4.3.3 Series-3 35 4.4 Polarization Dependent PL 36 4.4.1 Series-1 36 4.4.2 Series-2 37 Chapter 5. Conclusion and Outlook 38 References 39 Appendix 42

[1] Ravindra N.M., Tang W., Rassay S. (2019) Transition Metal Dichalcogenides Properties and Applications. In: Pech-Canul M., Ravindra N. (eds) Semiconductors. Springer, Cham. https://doi.org/10.1007/978-3-030-02171-9_6
[2] Li, H., Shi, Y., Chiu, M. H. & Li, L. J. Emerging energy applications of two-dimensional layered transition metal dichalcogenides. Nano Energy 18, 293–305 (2015).
[3] Moghadasi, A., Roknabadi, M. R., Ghorbani, S. R. & Modarresi, M. Electronic and phononic modulation of MoS2 under biaxial strain. Phys. B Condens. Matter 526, 96–101 (2017).
[4] Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
[5] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
[6] Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, (2017).
[7] Lv, R. et al. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48, 56–64 (2015).
[8] Mueller, T. & Malic, E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater. Appl. 2, 1–12 (2018).
[9] Li, H. et al. From bulk to monolayer MoS 2: Evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012).
[10] Kaplan, D. et al. Excitation intensity dependence of photoluminescence from monolayers of MoS2 and WS2/MoS2 heterostructures. 2D Mater. 3, 15005 (2016).
[11] Shang, M. H. et al. Elimination of S Vacancy as the Cause for the n-Type Behavior of MoS2 from the First-Principles Perspective. J. Phys. Chem. Lett. 9, 6032–6037 (2018).
[12] Velický, M. & Toth, P. S. From two-dimensional materials to their heterostructures: An electrochemist's perspective. Appl. Mater. Today 8, 68–103 (2017).
[13] Li, H. et al. From bulk to monolayer MoS 2: Evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012).
[14] Liu, H. F., Wong, S. L. & Chi, D. Z. CVD Growth of MoS2-based Two-dimensional Materials. Chem. Vap. Depos. 21, 241–259 (2015).
[15] Yang, Y. et al. Growth of monolayer MoS2 films in a quasi-closed crucible encapsulated substrates by chemical vapor deposition. Chem. Phys. Lett. 679, 181–184 (2017).
[16] Özden, A., Ay, F., Sevik, C., & Perkgöz, N. K. (2017). CVD growth of monolayer MoS2: Role of growth zone configuration and precursors ratio. Japanese Journal of Applied Physics, 56(6S1), 06GG05. doi:10.7567/jjap.56.06gg05.
[17] Liu, H. et al. Role of the carrier gas flow rate in monolayer MoS2 growth by modified chemical vapor deposition. Nano Res. 10, 643–651 (2017).
[18] Zhu, Z. et al. Influence of growth temperature on MoS2 synthesis by chemical vapor deposition. Mater. Res. Express 6, 95011 (2019).
[19] Nguyen, V. T. et al. Large-scale chemical vapor deposition growth of highly crystalline MoS2 thin films on various substrates and their optoelectronic properties. Curr. Appl. Phys. 19, 1127–1131 (2019).
[20] Li, H., Zhu, X., Tang, Z. K. & Zhang, X. H. Low-temperature photoluminescence emission of monolayer MoS2 on diverse substrates grown by CVD. J. Lumin. 199, 210–215 (2018).
[21] Li, H. et al. From bulk to monolayer MoS 2: Evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012).
[22] Kim, H. J. et al. Changes in the Raman spectra of monolayer MoS2 upon thermal annealing. J. Raman Spectrosc. 49, 1938–1944 (2018).
[23] Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2. A.C.S. Nano 4, 2695–2700 (2010).
[24] Molina-Sánchez, A. & Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B - Condens. Matter Mater. Phys. 84, 1–8 (2011).
[25] Su, L., Zhang, Y., Yu, Y. & Cao, L. Dependence of coupling of quasi-2-D MoS2 with substrates on substrate types, probed by temperature dependent Raman scattering. Nanoscale 6, 4920–4927 (2014).
[26] McCreary, K. M., Hanbicki, A. T., Sivaram, S. V. & Jonker, B. T. A- and B-exciton photoluminescence intensity ratio as a measure of sample quality for transition metal dichalcogenide monolayers. A.P.L. Mater. 6, (2018).
[27] Sarkar, A. S. et al. Robust B-exciton emission at room temperature in few-layers of MoS2: Ag nano heterojunctions embedded into a glass matrix. Sci. Rep. 10, 1–10 (2020).
[28] Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 2–5 (2010).
[29] Zhao, W., Ghorannevis, Z., Chu, L., Toh, M., Kloc, C., Tan, P.-H., & Eda, G. (2012). Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2. A.C.S. Nano, 7(1), 791–797. doi:10.1021/nn305275h
[30] Sun, W. Atomic Force Microscopy in Molecular and Cell Biology. At. Force Microsc. Mol. Cell Biol. (2018) doi:10.1007/978-981-13-1510-7.
[31] Jalili, N. & Laxminarayana, K. A review of atomic force microscopy imaging systems: Application to molecular metrology and biological sciences. Mechatronics 14, 907–945 (2004).
[32] Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).
[33] O.A. Bauchau, J.I. Craig, Euler-Bernoulli beam theory, Solid Mechanics and its Applications, DOI (2009) 173-221.
[34] Rodriguez, J.S.D 2020, Nanoscale Investigation of the Mechanical and Electrical Properties of Polyaniline/Graphene Oxide Composite Thin Films Fabricated by Physical Mixture Method, National Taiwan Normal University, Taipei Taiwan.
[35] Hahn, D. W. Raman Scattering Theory. Dep. Mech. Aerosp. Eng. Univ. Florida 1–13 (2007).
[36] Long, D. A. The Raman effect: a unified treatment of the theory of Raman scattering by molecules. 2002. West Sussex, England: John Wiley & Sons Ltd vol. 8 (2002).
[37] Wang, F., Liu, X. K. & Gao, F. Fundamentals of solar cells and light-emitting diodes. Advanced Nanomaterials for Solar Cells and Light Emitting Diodes (Elsevier Inc., 2019). doi:10.1016/B978-0-12-813647-8.00001-1.
[38] Capellini, V., Constantinides, A. G. & Matter, C. Editor Optical Characterization of Semiconductors: Infrared, Raman, and.
[39] Liqiang, J. et al. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 90, 1773–1787 (2006).
[40] Joseph H. Simmons and Kelly S. Potter: Optical Materials.
[41] Lin, Y.-C. & Kuo, H.-C. Study of Mesostructural Materials Constructed Nano-optoelectronics. (2004).
[42] Meyer, G. & Amer, N. M. Novel optical approach to atomic force microscopy. Appl. Phys. Lett. 53, 1045–1047 (1988).
[43] Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS 2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).
[44] Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

下載圖示
QR CODE