簡易檢索 / 詳目顯示

研究生: 謝振芳
Hsieh, Chen Fang
論文名稱: 不同步態速度下剪力避震效果之量化與下肢動力學分析
Quantifying the Effectiveness of Shear Cushioning by Mobile Platform in Different Gait Situations.
指導教授: 相子元
Shiang, Tzyy Yuang
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 43
中文關鍵詞: 地面反作用力負荷率關節力矩關節角度
英文關鍵詞: Ground reaction forces, loading rate, joint moments, joint angle
論文種類: 學術論文
相關次數: 點閱:134下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:以移動平台量化剪力避震效果,探討不同剪力避震勁度條件
    對地面反作用力與下肢動力學的影響,進一步找出最合適的剪力避震勁
    度,評估最佳化剪力避震模式,以達到最佳剪力避震效果。實驗方法:
    以十二位健康大專男性為受試者(身高:173.3±2.5 公分,體重:67.1±7.2
    公斤,年齡:23.2±1.3 歲),實驗控制三種步態速度與五種移動平台狀況
    來進行實驗,探討水平地面反作用力與下肢動力學相關參數。第二階段
    實驗利用改良式鞋底的方式,仿造移動平台勁度條件,相同進行水平地
    面反作用力與下肢動力學相關參數的分析。統計方式以二因子混合設計
    變異數分析,比較不同速度與不同平台組合之間的差異,各顯著水準均
    定為 α=.05。結果:適當的勁度條件能延遲水平剪力的第一力量峰值發生
    時間,能降低負荷率的大小。適當範圍的移動量不會影響下肢角度的變
    化,而隨著增加移動量,能夠減小最大關節力矩,但過多移動量也會增
    加關節的負荷。

    Purpose: The purpose of this study was to explore the different conditions on the stiffness of mobile platform to determine the ideal stiffness which can postpone the occurrence of impact and reduce the horizontal forces. Methods: Twelve healthy male participants (age: 23.2±1.3 years, height: 173.3±2.5 cm, weight: 67.1±7.2 kg) were volunteered for this study. In the first stage, each participant was asked to perform walking (1.5 ± 0.2 ms-1), jogging (2.5 ± 0.2 ms-1) and running (3.5 ± 0.2 ms-1) on five different mobile platform conditions in randomized sequence. Lower extremity kinematics and kinetics were calculated in this study. Two-way mixed design ANOVA was used to do the statistical analysis, the significant level was set α=.05. In the second stage, the appropriate stiffness conditions were placed on the sole to observe the shear cushioning effect in real situation. Results: Appropriate stiffness of mobile platform could provide better horizontal cushion and reduce lower extremity joint loading, but not to affect the lower limbs joint angle. Conclusions: To apply our findings on real situation, we can provide appropriate stiffness in different gait situations to raise the effect of shear cushioning.

    目次 目次……………………………………………………………………………………….…………….iv 表次………………………………………………………………………………………………….....iv 圖次……………………………………………………………………………………………..……...iv 第壹章 緒論 1 一、 研究背景 1 二、 研究目的 4 三、 實驗參數 5 四、 研究範圍與限制 5 五、 名詞操作型定義 5 第貳章 相關文獻探討 8 一、 地面反作用力之相關研究 8 二、 水平剪力相關研究之探討 10 三、 文獻總結 13 第參章 材料與方法 14 一、 實驗對象 14 二、 實驗設備 14 三、 實驗設計 17 四、 資料分析 20 五、 統計方式 22 第肆章 結果 23 一、 平台組合對於位移與相關動力學參數結果之影響 23 二、 平台組合對下肢運動學參數之影響 30 三、 改良式鞋底的實驗觀察結果 34 第伍章 討論與結論 34 一、 移動距離對於避震能力參數影響之探討 34 二、 平台組合對避震能力影響之探討 36 三、 移動平台對關節角度及力矩之影響 38 四、 移動平台實驗之真實性探討 39 五、 改良式鞋底結果觀察之探討 40 六、 結論 40 七、 建議 41 引用文獻 42 附錄一 45

    中文部分
    侯傳方 (2009)。滑動表面對於地面反作用力和膝關節動力學的影響 (未出版碩士論文)。臺北市立體育學院運動器材科技研究所,臺北市。
    黃淑玲 (2010)。不同鞋底剪力避震模式對下肢動力學之影響 (未出版碩士論文)。臺北市立體育學院運動器材科技研究所,臺北市。
    但漢真 (2011)。以平台探討滑動對剪力避震之功效 (未出版碩士論文)。國立台灣師範大學運動科學研究所,臺北市。
    英文部分
    American Society for Testing and Materials (ASTM). (1994). Standard Definitions
    of Terms Relating to Athletic Shoes and Biomechanics. Philadephia, PA: Author.
    Boyer, K.A., & Nigg, B.M. (2006). Soft tissue vibrations within one soft tissue compartment. Journal of Biomechanics, 39(4), 645-651.
    Divert, C., Mornieux, G., Baur, H., & Mayer, F. (2005). A. Belli1 Mechanical Comparison of Barefoot and Shod Running. International Journal of Sports Medicine, 26(7), 593-598.
    Gottschall, J.S., & Kram, R. (2005). Ground reaction forces during downhill and uphill running. Journal of Biomechanics, 38(3), 445-452.
    Helseth, J., Hortobágyi, T., & DeVita, P. (2008). How do low horizontal forces produce disproportionately high torques in human locomotion? Journal of Biomechanics, 41(8), 1747-1753.
    Hreljac, A. (2004). Impact and overuse injuries in runners. Medicine and Science in Sports and Exercise, 36(5), 845-849.
    Kuitunen, S., Komi, P.V., & Kyröläinen, H. (2002). Knee and ankle joint stiffness in sprint running. Medicine and Science in Sports and Exercise, 34(1), 166-173.
    Kyröläinen, H., Avela, J., & Komi, P.V. (2005). Changes in muscle activity with increasing running speed. Journal of Sports Sciences, 23(10), 1101-1109.
    McKenzie, DC, Taunton, JE, Clement, DB, Smart, GW, & McNicol, KL. (1981). Calcaneal epiphysitis in adolescent athletes. Canadian journal of applied sport sciences. Journal Canadien des Sciences Appliquees au Sport, 6(3), 123-125.
    Nigg, B.M. (1986). Biomechanics of running shoes: Champaign, Ill.: Human Kinetics Publishers.
    Nigg, BM, & Segesser, B. (1992). Biomechanical and orthopedic concepts in sport shoe construction. Medicine and Science in Sports and Exercise, 24(5), 595-602.
    Stefanyshyn, D. J. (2006). Footwear traction and knee joint moments. Journal of Biomechanics, 39(Suppl1), s181.
    Stiles, V., & Dixon, S. (2007). Biomechanical response to systematic changes in impact interface cushioning properties while performing a tennis-specific movement. Journal of Sports Sciences, 25(11), 1229-1239.
    Swanson, S.C., & Caldwell, G.E. (2000). An integrated biomechanical analysis of high speed incline and level treadmill running. Medicine and Science in Sports and Exercise, 32(6), 1146-1155.
    Taunton, JE, Ryan, MB, Clement, DB, McKenzie, DC, Lloyd-Smith, DR, & Zumbo, BD. (2002). A retrospective case-control analysis of 2002 running injuries. British Journal of Sports Medicine, 36(2), 95-101.
    Wakeling, J.M., Liphardt, A.M., & Nigg, B.M. (2003). Muscle activity reduces soft-tissue resonance at heel-strike during walking. Journal of Biomechanics, 36(12), 1761-1769.
    Yavuz, M., Tajaddini, A., Botek, G., & Davis, B.L. (2008). Temporal characteristics of plantar shear distribution: relevance to diabetic patients. Journal of Biomechanics, 41(3), 556-559.

    下載圖示
    QR CODE