簡易檢索 / 詳目顯示

研究生: 許欣怡
論文名稱: 摻雜不同離子對Cs2Nb4O11光譜性質之影響
Effects of different ion dopants on the optical properties of Cs2Nb4O11
指導教授: 劉祥麟
Liu, Hsiang-Lin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 119
中文關鍵詞: 鈮酸銫拉曼散射光譜橢圓儀x光繞射能譜能隙
英文關鍵詞: Cs2Nb4O11, Raman-scattering spectra, ellipsometry, X-ray, energy gap
論文種類: 學術論文
相關次數: 點閱:263下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們量測單晶、粉末壓錠、及摻雜不同離子Cs2Nb4O11(CNO)樣品的x光繞射能譜、拉曼散射光譜以及橢圓偏光光譜,探究摻雜不同離子對CNO樣品的晶格常數、反鐵電-順電相變溫度、及電子結構之影響。
    我們發現摻雜離子半徑較小者(例如:摻雜V離子、Ta離子及Rb離子),CNO的單位晶胞體積變小;而摻雜離子半徑較大者(例如:摻雜S離子),CNO的單位晶胞體積增大。CNO室溫拉曼散射光譜顯示12個拉曼特徵峰,頻率位置分別為157 cm-1、171 cm-1、185 cm-1、201 cm-1、255 cm-1、538 cm-1、620 cm-1、668 cm-1、717 cm-1、847 cm-1、868 cm-1及877 cm-1,我們發現摻雜不同離子對620 cm-1拉曼峰之影響最為顯著,其對應鈮氧八面體之氧離子伸張振動,當摻雜V離子與Ta離子時,620 cm-1拉曼峰展現紅移,我們推測八面體因之鍵長伸長,使得鍵能下降。此外,隨著樣品溫度升高,620 cm-1拉曼峰的頻率位置或半高寬顯現異常溫度效應,這暗指反鐵電-順電相變溫度對晶格動力學的影響,不同摻雜樣品之相變溫度比之未摻雜CNO皆有下降的趨勢。
    橢圓偏光光譜分析未摻雜CNO樣品的能隙值約為3.23 eV,而摻雜V離子、Ta離子、Rb離子、及S離子的C28及C29樣品之能隙值分別約為2.17 eV、2.09 eV、3.26 eV、2.6 eV、及3.2 eV,我們發現除了摻雜Rb離子樣品之能隙值未下降,其餘摻雜不同離子樣品的能隙值皆變小,此與第一原理理論計算結果相符,由於摻雜陽離子取代Nb離子,導致能隙值下降最多,故建議以此作為調變CNO樣品能隙值的基礎。

    We present x-ray powder diffraction, Raman-scattering, and spectroscopic ellipsometry measurements of Cs2Nb4O11 (CNO) with different dopants. Our goal is to unveil the effects of dopants on lattice dynamics and electronic structures as well as antiferroelectric to paraelectric phase transition temperatures.
    At room temperature, x-ray powder diffraction data show that the replacement of O ions with larger S ions causes an expansion of unit cell volume. In contrast, the unit cell volume decreases when doped with Ta and V on Nb, and Rb on Cs sites. Furthermore, Raman-scattering spectrum of undoped CNO shows twelve phonon modes at about 157, 171, 185, 201, 255, 538, 620, 668, 717, 847, 868, and 877 cm-1. One strong vibration observed at about 620 cm-1 corresponding to the stretching modes of NbO6 octahedra exhibits a redshift trend in S-doped and Ta-, V-, and Rb-doped samples. Additionally, antiferroelectric to paraelectric phase transition temperature is decreasing in all doping samples.
    Finally, the absorption spectra determined from spectroscopic ellipsometry analysis of undoped CNO, S-, Ta-, V-, and Rb-doped ones show a direct gap of about 3.23 eV, 2.60 eV, 2.09 eV, 2.17 eV, and 3.26 eV, which are in good agreement with the predictions of first-principles calculations. Most importantly, these studies demonstrate band gap tunability in the CNO system.

    誌謝 i 摘要 iii Abstract v 目錄 vii 圖目錄 ix 表目錄 xii 第一章 緒論 1 第二章 研究背景 5 第三章 實驗儀器設備及其基本原理 22 3-1 光譜儀系統 22 3-2 光譜分析原理介紹 24 3-2-1 拉曼散射光譜原理 24 3-2-2 橢圓偏光光譜原理 28 第四章 實驗樣品特性 35 4-1 樣品製程 35 4-2 樣品結構 36 第五章 實驗結果與討論 41 5-1 未摻雜Cs2Nb4O11的光譜性質研究 41 5-2 摻雜不同離子Cs2Nb4O11的光譜性質研究 45 5-2-1 摻雜陽離子 46 5-2-2 摻雜陰離子 48 第六章 結論與未來展望 115 參考文獻 117

    [1] M. Kitano and M. Hara, “Heterogeneous photocatalytic cleavage”, J. Mater. Chem. 20, 627 (2010).
    [2] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature 238, 37 (1972).
    [3] Y. Miseki, H. Kato, and A. Kudo, “Water splitting into H2 and O2 over Cs2Nb4O11 photocatalyst”, Chem. Lett. 34, 54 (2005).
    [4] H. L. Liu, C. R. Huang, G. F. Luo, and W. N. Mei, “Optical properties of antiferroelectric Cs2Nb4O11: Absorption spectra and first-principles calculations”, J. Appl. Phys. 110, 103515 (2011).
    [5] E. P. Kharitonova, V. I. Voronkova, and V. K. Yanovskii, “Growth and electrical properties of Cs2Nb4O11 crystals”, Inorg. Mater. 37, 508 (2001).
    [6] A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore and, N. D.
    Mathur, “Giant electrocaloric effect in phin film PbZr0.95Ti0.05O3”, Science 311, 1270 (2006).
    [7] J. Parui and S. B. Krupanidhi, “Electrocaloric effect in antiferroel- ectric PbZrO3 phin films”, Phys. Stat. Sol. 2, 230 (2008).
    [8] H. Liu and B. Dkhil, “A brief review on the model antiferroelectr- onic PbZrO3”, J. Kristallog. 226, 163 (2011).
    [9] A. R. Chaudhuri, M. Arredondo, A. Hahnel, A. Morelli, M. Becker,
    M. Alexe and I. Vrejoiu, “Epitaxial strain stabilization of a ferroelec-
    tric phase in PbZrO3 phin films”, Phys. Rev. B 84, 054112 (2011).
    [10] X. Tan, C. Ma, J. Fredrick, S. Beckman and K. G. Webber, “The
    antiferroelectronic-ferroelectronic phase transition in Z lead-contai-
    ning and Z lead-free perovskite ceramicsm”, J. Am. Ceram. Soc. 94, 4091 (2011).
    [11] A. Reisman and J. mineo, “Compound repetition in oxide-oxide interactions the system Cs2O-Nb2O5”, J. Phys. Chem. 65, 996 (1961).
    [12] M. Gasperin, “Structural crystallography and crystal chemistry”, Acta Crystallogr. Sec. B 37, 641 (1981).
    [13] E. P. Kharitonova, V. I. Voronkova, V. K. Yanovskii, and S. Y. Stefanovich, “Crystal growth and physical properties of Cs2Nb4O11 and Rb2Nb4O11 single crystals”, J. Cryst. Growth 237-239, 703 (2002).
    [14] J. J. Liu, E. P. Kharitonova, C. G. Duan, W. N. Mei, R. W. Smith, and J. R. Hardy, “Phase transition in single crystal Cs2Nb4O11”, Journal of Chemical Physics 122, 144503 (2005).
    [15] R. W. Smith, C. H. Hu, J. J. Liu, W. N. Mei, and K. J. Lin, “Structure and antiferroelectric properties of cesium niobate, Cs2Nb4O11”, Journal of Solid State Chemistry 180, 1193 (2007).
    [16] R. W. Smith, G. F. Luo, and W. N. Mei, “High-temperature crystal structure and electronic properties of cesium niobate Cs2Nb4O11”, Journal of Physics and Chemistry of Solids 71, 1357 (2010).
    [17] S. D. Ross, “The vibrational spectra of lithium niobate, barium sodium niobate and barium sodium tantalate”, J. Phys. C 3, 7 (1970).
    [18] G. Blasse, “Vibrational spectra of yttrium niobate and tantalate”, J. Solid State Chem. 7, 169 (1973).
    [19] Pushan Ayyub, M. S. Multani, V. R. Palkar, and R. Vijayaraghavan, “Vibrational spectroscopic study of ferroelectric SbNbO4, antiferroelectric BiNbO4, and their solid solutions”, Phys. Rev. B 34, 8137 (1986).
    [20] J. M. Jehng and I. E. Wachs, “Structural chemistry and Raman spectra of niobium oxides”, Chem. Mater. 3, 100 (1991).
    [21] X. B. Wang, Z. X. Shen, Z. P. Hu, L. Qin, S. H. Tang, and M. H. Kuok, “High temperature Raman study of phase transitions in antiferroelectric NaNbO3”, J. Mol. Struct. 385, 6 (1996).
    [22] Y. D. Juang, S. B. Dai, Y. C. Wang, W. Y. Chou, J. S. Hwang, M. L. Hu, and W. S. Tse, “Phase transition of LixNa1-xNbO3 studied by Raman scattering method”, Solid State Commun. 111, 723 (1999).
    [23] S. B. Dai, Y. D. Juang, J. S. Hwang, and S. Y. Chu, “Using Raman scattering to study the doping effect and low-temperature transition of Li0.01K0.99NbO3 ceramics”, J. Cryst. Growth 257, 316 (2003).
    [24] 鄧勃、寧永成、劉密新著,儀器分析,清華大學出版社出
    版,中華民國八十年五月第一版。
    [25] http://abulafia.mt.ic.ac.uk/shannon/ptable.php
    [26] William G. Fateley and Francis R. Dollish, “Infrared and Raman selection rules for molecular and lattice vibrations: The correlation method” (1972).
    [27] N. S. Nagendra Nath, “The normal vibrations of molecules having
    octahedra symmetry”, Proc. Indian Acad. Sci. 1, 250 (1934).
    [28] U. Balachandran and N. G. Eror, “Raman spectrum of the high temp-
    erature form of Nb2O5”, J. Mater. Sci. Lett. 1, 374 (1982).
    [29] J. S. Bae, I. S. Yang, J. S. Lee, T. W. Noh, T. Takeda, and R. Kanno, “Phonon dynamics of the geometrically frustrated pyrochlore Y2Ru2O7 investigated by Raman spectroscopy”, Phys. Rev. B 73, 052301 (2006).
    [30] J. I. Pankove, “Optical Processes in Semiconductors” (Dover, New York, 1971).
    [31] W. N. Mei et al. (unpublished).

    下載圖示
    QR CODE