簡易檢索 / 詳目顯示

研究生: 蔡晉民
論文名稱: 利用二氧化鈦奈米桿改善鈣鈦礦晶體薄膜增益太陽能電池效率
TiO2 Nanorod Improve Morphology of Solution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cell
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 101
中文關鍵詞: 太陽能電池有機-無機鈣鈦礦二氧化鈦奈米桿
英文關鍵詞: Solar cell, Organic-inorganic perovskite, TiO2 nanorod
論文種類: 學術論文
相關次數: 點閱:718下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近來有機-無機鈣鈦礦太陽能電池領域蓬勃發展、備受矚目,由於其極高吸收系數與極佳的光電轉換效率,因此能降低太陽能電池薄膜厚度並達到極佳之太陽能元件效率。
    目前,已有各種鈣鈦礦太陽能電池結構被發展,許多電子傳輸層與電洞傳輸層也相繼被替換,不過高效率結構主體仍以高溫燒結之二氧化太光陽極並沉積甲胺鉛碘(CH3NH3PbI3)作吸光層為主。然而,這種結構由於二氧化鈦層需要極高的燒結溫度(~500oC),因此將會提高元件製作成本與複雜度,若將二氧化鈦層移除,發展平面異質接面結構,礙於CH3NH3PbI3本身擴散長度(~100nm)之限制與溶液沉積法所得之鈣鈦礦晶體表面形貌不佳,造成目前元件效率無法提升。
    本論文利用合成出低溫之二氧化鈦奈米桿,藉由添加入CH3NH3PbI3系統內,我們發現二氧化鈦在系統內可幫助載子分離、並且當二碘化鉛與甲胺碘反應後,鈣鈦礦晶體表面的形貌改善,使得晶體彼此聯結性增加,這些原因有助於元件效率的提升,並且在此製程裡我們成功製作出一種新型態,簡單、低溫、低成本之混摻(Hybrid)結構有機-無機鈣鈦礦太陽能電池,並成功將元件效率提升至8%。

    Inorganic-organic perovskite solar cells are significant technology, promising cost-competitive solar power by cheap material and fabrication costs as compared to established conventional silicon solar cell. Mesoscopic structure heterojunction solar cell showed higher efficiency devices than other kinds of structure solar cells. But, they have serious drawback such as needed high annealing temperature for forming well crystalized TiO2, which makes more complicate process of fabrication and flexible less substrates.
    To overcome this, researchers move to planar heterojunction perovskite solar cells. However, they also have the problems of limited diffusion length and morphology hard to control by using solution processed deposition. The morphology is wisely controlled by varying processing conditions, and demonstrated that the highest photocurrents achievable only with the highest perovskite surface exposures.
    Here, we effectively synthesized well-crystalline TiO2 nanorod by low temperature sol gel process, followed by ligand exchange method by using acrylic acid. In order to fabricate the perovskite film, we also synthesized CH3NH3I to gain the high purity powder, which was impregnated with TiO2 nanorod for fabrication of a new structure that is hybrid heterojunction perovskite solar cell system.
    With improved solution based film formation shows higher efficiency of Jsc(Short-circuit current) and better FF(Fill factor). It may be due to the TiO2 nanorod provides more interfaces for the carrier charge separation and morphological changes of PbI2 in TiO2 nanorod such as pin-holes. Further, improved the morphology of perovskite surface occurred by the formation of better connection surface of perovskite crystalline because of more nucleation spots available on CH3NH3I for react with PbI2. Under optimized condition, the efficiency of device was raised to 8% which is better than other solution process planar-heterojunciton solar cell.

    總目錄 摘要 I Abstract II 謝誌 IV 總目錄 V 圖表目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2 有機-無機鈣鈦礦材料介紹 3 1-2-1 有機-無機鈣鈦礦材料之發展 3 1-2-2 有機-無機鈣鈦礦材料之應用 9 1-2-3有機-無機鈣鈦礦材料沉積之方法 11 第二章 原理及文獻回顧 15 2-1 太陽能電池元件基礎 15 2-1-1 P-N接面工作行為: 15 2-1-2 太陽能元件工作原理: 19 2-2 太陽能電池世代之發展 23 2-3 有機-無機鈣鈦礦太陽能電池之發展 26 2-3-1 介觀異質接面有機-無機鈣鈦礦太陽能電池 26 2-3-2 平面異質接面有機-無機鈣鈦礦太陽能電池 38 2-3-3 平面異質接面之有機-無機鈣鈦礦薄膜形貌增益 41 2-4 研究動機與目的 44 第三章 儀器設備與藥品 46 3-1 儀器設備介紹及基本原理 46 3-1-1 氙燈與單光器(Xenon lamp and Monochromator) 46 3-1-2 X-光繞射分析儀 (X-ray Diffraction, XRD) 47 3-1-3 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 48 3-1-4 掃瞄式電子顯微鏡 (Scanning Electron Microscopy, SEM) 50 3-1-5 紫外-可見-近紅外光吸收光譜(UV-Vis-NIR Absorption Spectrometer) 51 3-1-6 傅立葉紅外光譜儀(Fourier transform infrared spectroscopy) 52 3-1-7 旋轉塗佈機(Spin Coater) 53 3-1-8 真空蒸鍍機 (Vacuum Evaporation) 53 3-1-9 太陽光模擬器及電流密度-電壓特性量測設備 55 3-2 藥品與器材 57 第四章 實驗流程 58 4-1 實驗流程架構 58 4-2 甲胺碘(CH3NH3I)之合成及原理 59 4-3 低溫二氧化鈦奈米桿之合成及原理 61 4-4 低溫二氧化鈦奈米桿使用丙烯酸之離心與置換 64 4-5 低溫二氧化鈦奈米桿使用吡啶之離心與置換 65 4-6 元件製作步驟 66 第五章 實驗結果與討論 68 5-1 甲胺碘(CH3NH3I)有機銨鹽分析 68 5-2 二氧化鈦奈米桿晶體特性分析 69 5-3 二氧化鈦奈米桿於元件系統內之分布 72 5-4 二氧化鈦奈米桿表面配位基(Ligand)之取代 74 5-5 不同表面配位基對元件效率之影響 78 5-6 不同濃度二氧化鈦奈米桿對元件之影響 80 5-7 薄膜元件吸收光譜之分析 82 5-8 螢光光譜分析 84 5-9 CH3NH3PbI3薄膜形成前後表面SEM分析 88 第六章 結論 94 第七章 參考文獻 96 圖表目錄 圖1-1、1000年到2100年地球表面溫度的變化[1] 2 圖1-2、2000年至2100年內全球能源趨勢圖[2] 2 圖1-3、標準鈣鈦礦晶格結構[3] 3 圖1-4、單層〈100〉方向鈣鈦況材料(a)單胺基(Monoammonium, RNH3+)(b)雙銨基(Diammonium, +NH3RNH3+)有機陽離子插層[7] 4 圖1-5、氫鍵於鈣鈦礦晶格內鍵結位置(a)與雙橋基鹵素與一末端鹵素、(b)與單橋基鹵素與雙末端鹵素鍵結[7] 5 圖1-6、不同方向之層狀鈣鈦礦結構(a) <100>方向: (R-NH3)2AN-1MNX3N+1(b) <110>方向: (R-NH3)2AMMMX3M+2(c) <111>方向: (R-NH3)2Q-1MQX3Q+3[7] 6 圖1-7、二維有機無機鈣鈦礦層狀結構與量子阱能帶對應圖[8] 8 圖1-8、(C4H9NH3)2MI4金屬M位為(a)Ge、(b)Sn、(c)Pb之放光光譜(激發波長為457nm)[6] 10 圖1-9、雙蒸鍍元法示意圖[23] 13 圖2-1、(a) P-N接面的二極體元件圖、(b) P-N接面的二極體能帶圖 16 圖2-2、(a)二極體施加正偏壓示意圖、(b)二極體施加負偏壓示意圖 16 圖2-3、施加偏壓下理想P-N二極體I-V曲線工作圖 16 圖2-4、穿隧崩潰之載子與能帶示意圖 19 圖2-5、(a)P-N元件照光後I-V曲線移動行為圖、(b)I-V曲線與X、Y軸交點表示圖 19 圖2-6、元件照光下I-V曲線與填充係數關係圖 22 圖2-7、太陽能電池各世代發展圖 24 圖2-8、各世代太陽能電池之效率發展圖[36] 26 圖2-9、(a)染敏型太陽能電池結構示意圖、(b)染敏型太陽能電池光照後反應示意圖[37] 27 圖2-10、(a)鈣鈦礦結構奈米粒子沉積於二氧化鈦孔洞、(b)染敏型鈣鈦礦太陽能電池效率[33] 27 圖2-11、(a)甲胺鉛碘奈米粒子與染料N719之量子效率圖、(b)染料N719波長對應吸收係數圖、(c)甲胺鉛碘波長對應吸收係數圖[38] 29 圖2-12、(a)甲胺鉛碘於水溶液下分解反應、(b)電洞於電洞傳輸層之傳遞[39, 42] 29 圖2-13、電洞於Spiro-MeOTAD電洞傳輸層之傳遞形式[43] 30 圖2-14、甲胺鉛碘以Spiro-MeOTAD為電洞傳輸材料元件結構圖[41] 31 圖2-15、(a)CH3NH3PbI3一步沉積法鈣鈦礦薄膜(溶劑: r-丁內酯)、(b)CH3NH3PbI3一步沉積法鈣鈦礦薄膜(溶劑: 二甲基甲醯胺)、(c)CH3NH3PbI3兩步沉積法鈣鈦礦薄膜表面,沉積於FTO導電玻璃[34] 32 圖2-16、(a)電子於二氧化鈦與三氧化鋁系統下傳遞途徑示意圖、(b)三氧化鋁與二氧化鈦元件I-V曲線圖、(c)鈣鈦礦沉積於三氧化鋁與二氧化鈦元件光電流衰減與載子生命期關係圖[3] 33 圖2-17、(a) CH3NH3PbI3與CH3NH3PbBr3之鈣鈦礦結構圖、CH3NH3Pb(I1−XBrX)3隨X比例變化(b)吸收光譜圖、(c) I-V曲線[49] 35 圖2-18、(a) NH2CH=NH2+取代之鈣鈦礦結構於吸收光譜圖、(b) NH2CH=NH2+取代之鈣鈦礦元件I-V曲線圖[51] 36 圖2-19、CH3NH3PbI1-XClX與CH3NH3SnI3 (A)吸收與放光光譜、(b)元件I-V曲線圖[53] 37 圖2-20、(上)蒸鍍與溶液沉積法所得之CH3NH3PbI1-XClX平面異質接面結構剖面圖、(下)蒸鍍與溶液沉積法所得之CH3NH3PbI1-XClX平面異質接面太陽能電池效率表現[59] 39 圖2-21、蒸鍍與溶液沉積法所得之CH3NH3PbI1-XClX平面異質接面結構鈣鈦礦晶體表面圖[59] 39 圖2-22、可撓性CH3NH3PbI1-XClX平面異質接面太陽能電池結構[60] 41 圖2-23、(上)改變退火溫度對CH3NH3PbI1-XClX晶體薄膜表面覆蓋率影響、(下)改變 CH3NH3PbI1-XClX沉積厚度於相同退火溫度下之表面影響[67] 42 圖2-24、CH3NH3PbI1-XClX表面覆蓋率對元件(a)光電流之影響、(b)效率之影響[67] 42 圖2-25、(a) CH3NH3PbI1-XClX鈣鈦礦溶液添加1,8-二碘辛烷前後晶體結構表面差異圖、(b)添加1,8-二碘辛烷前後CH3NH3PbI1-XClX平面異質接面太陽能電池元件I-V曲線[68] 43 圖2-26、介觀異質接面結構(左)轉換為平面異質接面結構(右)圖[74] 45 圖3-1、Newport 500W氙燈 46 圖3-2、500W氙燈與單光器 47 圖3-3、XRD原理示意圖 48 圖3-4、本實驗所使用X-光繞射儀 48 圖3-5、穿透式電子顯微鏡 49 圖3-6、掃描式電子顯微鏡 50 圖3-7、紫外光-可見光-近紅外光吸收光譜儀 51 圖3-8、傅立葉紅外光譜儀 52 圖3-9、旋轉塗佈機 53 圖3-10、真空蒸鍍機示意圖 54 圖3-11、本實驗室之真空蒸鍍機裝置 55 圖3-12、太陽光照射角度示意圖 56 圖3-13、電流密度-電壓特性量測設備 56 圖3-14、本實驗所使用藥品與器材清單 57 圖4-1、甲胺碘反應步驟示意圖 59 圖4-2、二氧化鈦奈米桿前驅物於油酸中反應圖[69] 62 圖4-3、二氧化鈦奈米桿合成裝置示意圖 62 圖4-4、FTO導電玻璃蝕刻方法示意圖 67 圖4-5、PbI2與TIO2 nanorod溶液配置方法示意圖 67 圖4-6、元件各層結構示意圖 67 圖5-1、甲胺碘之核磁共振氫譜與碳譜分析 68 圖5-2、二氧化鈦奈米桿於油酸溶液 70 圖5-3、二氧化鈦奈米桿之X光繞射分析 71 圖5-4、二氧化鈦奈米桿之(左)低倍率與(右)高倍率之TEM圖 71 圖5-5、二氧化鈦奈米桿([TiO2]=0.005M IN CHCl3) 72 圖5-6、(a)PbI2薄膜轉換為CH3NH3PbI3薄膜前後之厚度變化SEM、(b)二氧化鈦奈米桿分布於PbI2與CH3NH3PbI3薄膜示意圖 73 圖5-7、PbI2薄膜轉換為CH3NH3PbI3薄膜前後之厚度變化SEM 74 圖5-8、激子擴散至(a)長碳鏈、(b)短碳鏈取代之二氧化鈦奈米桿界面分離行為 75 圖5-9、(a)二氧化鈦奈米桿使用不同配位基轉相前後圖、(b) 二氧化鈦奈米桿表面配位基取代後示意圖 76 圖5-10、二氧化鈦奈米桿使用ACA轉相前後之紅外線振動光譜圖 77 圖5-11、二氧化鈦奈米桿使用Pyridine轉相前後紅外線振動光譜圖 77 圖5-12、不同配位基之二氧化鈦奈米桿對平面異質接面鈣鈦礦太陽能電池效率影響之I-V曲線圖([TiO2]=1mg/ml) 79 圖5-13、不同濃度二氧化鈦奈米桿混摻之CH3NH3PbI3鈣鈦礦元件I-V曲線圖 81 圖5-14、不同濃度二氧化鈦奈米桿添加後CH3NH3PbI3晶體薄膜吸收光譜圖 82 圖5-15、PbI2轉換為CH3NH3PbI3晶體薄膜之SEM剖面圖 83 圖5-16、不同濃度二氧化鈦奈米桿添加之PbI2轉換為CH3NH3PbI3晶體薄膜之SEM剖面圖 84 圖5-17、摻不同濃度二氧化鈦奈米桿CH3NH3PbI3薄膜基板螢光光譜 85 圖5-18、CH3NH3PbI3鈣鈦礦(a)不含、(b)混摻二氧化鈦奈米桿之異質接面結構載子分離示意 86 圖5-19、摻不同濃度二氧化鈦奈米桿之CH3NH3PbI3薄膜基板隨時間螢光光譜 87 圖5-20、(a)不含、(b)混摻二氧化鈦奈米桿之異質接面結構載子擴散與分離示意圖 87 圖5-21、添加不同濃度二氧化鈦奈米桿對PbI2薄膜表面形貌之影響([TiO2]: 0~0.2mg/ml) 89 圖5-22、添加不同濃度二氧化鈦奈米桿對PbI2薄膜表面形貌之影響掃描式電子顯微鏡影像分析([TIO2]: 0.8~2mg/ml) 90 圖5-23、添加不同濃度二氧化鈦奈米桿對二碘化鉛薄膜轉換為鈣鈦礦晶體後其形貌改變圖 92 圖5-24、添加不同濃度二氧化鈦奈米桿對二碘化鉛薄膜轉換為鈣鈦礦晶體後其形貌改變示意圖 93 圖6-1、不同結構有機-無機鈣鈦礦太陽能電池優缺點比較 95

    第七章 參考文獻
    1. Griggs, D.J. and M. Noguer, Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Weather, 2002. 57(8): p. 267-269.
    2. German Advisory Council on Global Change, 2003.
    3. Lee, M.M., et al., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012. 338(6107): p. 643-647.
    4. Bhalla, A.S., R. Guo, and R. Roy, The perovskite structure – a review of its role in ceramic science and technology. Material Research Innovations, 2000. 4(1): p. 3-26.
    5. Liu, X., R. Hong, and C. Tian, Tolerance factor and the stability discussion of ABO3-type ilmenite. Journal of Materials Science: Materials in Electronics, 2009. 20(4): p. 323-327.
    6. Cheng, Z. and J. Lin, Layered organic-inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm, 2010. 12(10): p. 2646-2662.
    7. Mitzi, D.B., Templating and structural engineering in organic-inorganic perovskites. Journal of the Chemical Society, Dalton Transactions, 2001(1): p. 1-12.
    8. Era, M., et al., Organic‐inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Applied Physics Letters, 1994. 65(6): p. 676-678.
    9. Pradeesh, K., J.J. Baumberg, and G.V. Prakash, Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity. Optics Express, 2009. 17(24): p. 22171-22178.
    10. Uehara, M., et al., Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature, 1999. 399(6736): p. 560-563.
    11. He, T., et al., Superconductivity in the non-oxide perovskite MgCNi3. Nature, 2001. 411(6833): p. 54-56.
    12. Cohen, R.E., Origin of ferroelectricity in perovskite oxides. Nature, 1992. 358(6382): p. 136-138.
    13. Kudo, A., H. Kato, and S. Nakagawa, Water Splitting into H2 and O2 on New Sr2M2O7 (M = Nb and Ta) Photocatalysts with Layered Perovskite Structures:  Factors Affecting the Photocatalytic Activity. The Journal of Physical Chemistry B, 1999. 104(3): p. 571-575.
    14. Xu, X., et al., A red metallic oxide photocatalyst. Nat Mater, 2012. 11(7): p. 595-598.
    15. Mitzi, D.B., Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). Chemistry of Materials, 1996. 8(3): p. 791-800.
    16. Takeoka, Y., et al., Incorporation of conjugated polydiacetylene systems into organic-inorganic quantum-well structures. Chemical Communications, 2001(24): p. 2592-2593.
    17. Mitzi, D.B., Solution-processed inorganic semiconductors. Journal of Materials Chemistry, 2004. 14(15): p. 2355-2365.
    18. Koutselas, I., et al., Some Unconventional Organic−Inorganic Hybrid Low-Dimensional Semiconductors and Related Light-Emitting Devices. The Journal of Physical Chemistry C, 2011. 115(17): p. 8475-8483.
    19. Brivio, F., A.B. Walker, and A. Walsh, Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Materials, 2013. 1(4): p. -.
    20. Liang, K., D.B. Mitzi, and M.T. Prikas, Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique. Chemistry of Materials, 1998. 10(1): p. 403-411.
    21. Mitzi, D.B., Thin-Film Deposition of Organic−Inorganic Hybrid Materials. Chemistry of Materials, 2001. 13(10): p. 3283-3298.
    22. Chondroudis, K., D.B. Mitzi, and P. Brock, Effect of Thermal Annealing on the Optical and Morphological Properties of (AETH)PbX4 (X = Br, I) Perovskite Films Prepared Using Single Source Thermal Ablation. Chemistry of Materials, 1999. 12(1): p. 169-175.
    23. Era, M., et al., Self-Organized Growth of PbI-Based Layered Perovskite Quantum Well by Dual-Source Vapor Deposition. Chemistry of Materials, 1997. 9(1): p. 8-10.
    24. Mitzi, D.B., M.T. Prikas, and K. Chondroudis, Thin Film Deposition of Organic−Inorganic Hybrid Materials Using a Single Source Thermal Ablation Technique. Chemistry of Materials, 1999. 11(3): p. 542-544.
    25. Xiang, H.J., et al., Towards Direct-Gap Silicon Phases by the Inverse Band Structure Design Approach. Physical Review Letters, 2013. 110(11): p. 118702.
    26. Britt, J. and C. Ferekides, Thin‐film CdS/CdTe solar cell with 15.8% efficiency. Applied Physics Letters, 1993. 62(22): p. 2851-2852.
    27. Contreras, M.A., et al., Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells. Progress in Photovoltaics: Research and Applications, 1999. 7(4): p. 311-316.
    28. Guo, Q., H.W. Hillhouse, and R. Agrawal, Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells. Journal of the American Chemical Society, 2009. 131(33): p. 11672-11673.
    29. Green, M.A., et al., Solar cell efficiency tables (version 40). Progress in Photovoltaics: Research and Applications, 2012. 20(5): p. 606-614.
    30. Brabec, C.J., et al., Polymer–Fullerene Bulk-Heterojunction Solar Cells. Advanced Materials, 2010. 22(34): p. 3839-3856.
    31. O'Regan, B. and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991. 353(6346): p. 737-740.
    32. Yella, A., et al., Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science, 2011. 334(6056): p. 629-634.
    33. Kojima, A., et al., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
    34. Burschka, J., et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499(7458): p. 316-319.
    35. Park, N.-G., Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell. The Journal of Physical Chemistry Letters, 2013. 4(15): p. 2423-2429.
    36. Service, R.F., Turning Up the Light. Science, 2013. 342(6160): p. 794-797.
    37. Hardin, B.E., H.J. Snaith, and M.D. McGehee, The renaissance of dye-sensitized solar cells. Nat Photon, 2012. 6(3): p. 162-169.
    38. Im, J.-H., et al., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011. 3(10): p. 4088-4093.
    39. Niu, G., et al., Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. Journal of Materials Chemistry A, 2014. 2(3): p. 705-710.
    40. Frost, J.M., et al., Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells. Nano Letters, 2014. 14(5): p. 2584-2590.
    41. Kim, H.-S., et al., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep., 2012. 2.
    42. Bach, U., et al., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998. 395(6702): p. 583-585.
    43. Bach, U., et al., Charge Separation in Solid-State Dye-Sensitized Heterojunction Solar Cells. Journal of the American Chemical Society, 1999. 121(32): p. 7445-7446.
    44. Hardin, B.E., et al., Increased light harvesting in dye-sensitized solar cells with energy relay dyes. Nat Photon, 2009. 3(7): p. 406-411.
    45. Snaith, H.J., et al., Charge collection and pore filling in solid-state dye-sensitized solar cells. Nanotechnology, 2008. 19(42): p. 424003.
    46. Dharani, S., et al., High efficiency electrospun TiO2 nanofiber based hybrid organic-inorganic perovskite solar cell. Nanoscale, 2014. 6(3): p. 1675-1679.
    47. Etgar, L., et al., Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. Journal of the American Chemical Society, 2012. 134(42): p. 17396-17399.
    48. Heo, J.H., et al., Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photon, 2013. 7(6): p. 486-491.
    49. Noh, J.H., et al., Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Letters, 2013. 13(4): p. 1764-1769.
    50. Im, J.-H., et al., Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3. Nanoscale Research Letters, 2012. 7(1): p. 1-7.
    51. Eperon, G.E., et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 2014. 7(3): p. 982-988.
    52. Pang, S., et al., NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells. Chemistry of Materials, 2014. 26(3): p. 1485-1491.
    53. Hao, F., et al., Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat Photon, 2014. 8(6): p. 489-494.
    54. Abrusci, A., et al., High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers. Nano Letters, 2013. 13(7): p. 3124-3128.
    55. Christians, J.A., R.C.M. Fung, and P.V. Kamat, An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide. Journal of the American Chemical Society, 2013. 136(2): p. 758-764.
    56. Kumar, M.H., et al., Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chemical Communications, 2013. 49(94): p. 11089-11091.
    57. Kim, H.-S., et al., High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer. Nano Letters, 2013. 13(6): p. 2412-2417.
    58. Bi, D., et al., Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Advances, 2013. 3(41): p. 18762-18766.
    59. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501(7467): p. 395-398.
    60. Docampo, P., et al., Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun, 2013. 4.
    61. You, J., et al., Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano, 2014. 8(2): p. 1674-1680.
    62. Jeng, J.-Y., et al., CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells. Advanced Materials, 2013. 25(27): p. 3727-3732.
    63. Chiang, Y.-F., et al., High voltage and efficient bilayer heterojunction solar cells based on an organic-inorganic hybrid perovskite absorber with a low-cost flexible substrate. Physical Chemistry Chemical Physics, 2014. 16(13): p. 6033-6040.
    64. Cai, B., et al., High performance hybrid solar cells sensitized by organolead halide perovskites. Energy & Environmental Science, 2013. 6(5): p. 1480-1485.
    65. Roldan-Carmona, C., et al., Flexible high efficiency perovskite solar cells. Energy & Environmental Science, 2014. 7(3): p. 994-997.
    66. Sun, S., et al., The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy & Environmental Science, 2014. 7(1): p. 399-407.
    67. Eperon, G.E., et al., Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 2014. 24(1): p. 151-157.
    68. Liang, P.-W., et al., Additive Enhanced Crystallization of Solution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cells. Advanced Materials, 2014: p. n/a-n/a.
    69. Cozzoli, P.D., A. Kornowski, and H. Weller, Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO2 Nanorods. Journal of the American Chemical Society, 2003. 125(47): p. 14539-14548.
    70. Vo, D.Q., E.-J. Kim, and S. Kim, Surface modification of hydrophobic nanocrystals using short-chain carboxylic acids. Journal of Colloid and Interface Science, 2009. 337(1): p. 75-80.
    71. Lin, Y.-Y., et al., Interfacial Nanostructuring on the Performance of Polymer/TiO2 Nanorod Bulk Heterojunction Solar Cells. Journal of the American Chemical Society, 2009. 131(10): p. 3644-3649.
    72. Pillai, S.C., et al., Synthesis of High-Temperature Stable Anatase TiO2 Photocatalyst. The Journal of Physical Chemistry C, 2007. 111(4): p. 1605-1611.
    73. Chang, C.-H., et al., Improved charge separation and transport efficiency in poly(3-hexylthiophene)-TiO2nanorod bulk heterojunction solar cells. Journal of Materials Chemistry, 2008. 18(19): p. 2201-2207.
    74. Kim, H.-S., S.H. Im, and N.-G. Park, Organolead Halide Perovskite: New Horizons in Solar Cell Research. The Journal of Physical Chemistry C, 2014. 118(11): p. 5615-5625.
    75. Stranks, S.D., et al., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 2013. 342(6156): p. 341-344.

    無法下載圖示 本全文未授權公開
    QR CODE