研究生: |
周昱廷 Chow, Yu-Ting |
---|---|
論文名稱: |
奈米級銀緩衝層對鎳/矽(111)及鈷/矽(111)磁性影響研究 Magnetic properties of Ni/Si(111) and Co/Si(111) with nanoscale Ag buffer layers |
指導教授: |
蔡志申
Tsay, Jyh-Shen |
學位類別: |
博士 Doctor |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 93 |
DOI URL: | http://doi.org/10.6345/NTNU202000803 |
論文種類: | 學術論文 |
相關次數: | 點閱:140 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的主題為磁性物質以及表面合金,以歐傑電子能譜儀量測樣品的成分、以低能量電子繞射儀量測樣品結構以及表面磁光科爾效應儀量測磁特性。由於金屬/半導體近年來在科技上表現出卓越的潛力,矽又是其中最廣為使用的基板,並且矽化物在自旋電子元件等科技產品上也有不錯的應用,在過去的研究中亦發現銀緩衝層也是一個可以用來改變磁特性的主要材料之一,所以本篇論文的主軸放在矽化物的生成與應用中以及銀緩衝層影響磁特性的研究。如果將銀做為插入層,可以幫助鎳矽化物的形成;並且藉由銀的重構層我們發現鎳及鈷鍍在其表面時,會有不同的現象發生讓我們在製作元件上更有效的調控;最後銀做為緩衝層蓋在鎳表面時,藉由調控銀鎳介面的接觸面積可以來去控制其磁異向能。未來更希望可以研究更多種類的表面合金以及緩衝層,來發現其對磁性物質的磁特性如何造成影響,並希望可以使用同步輻射來更清楚的研究,成長樣品的表面形貌以及合金狀態,使得實驗成果能夠對於工業上有更大的貢獻。
Throughout my doctoral research, the main topic will be surrounded by magnetic surface alloys including two main kinds which are magnetic materials on surface alloy and surface alloys formed by magnetic material and semiconductor substrates. Combined with Auger electron spectroscopy (AES), surface magneto-optic Kerr effect (SMOKE), scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED), the structure, composition and magnetic properties can clearly investigated. Because magnetic metal/silicide interface is claimed to have great potential on quantum computing, spintronic devices and nanoscale Ag buffer layer is commonly used to influence the magnetic properties of ferromagnetic materials, we focus on the some novel methods of producing magnetic surface alloys and the influence of Ag buffer layers on the magnetic properties of ultrathin magnetic thin films.
Nowadays, Ni silicides show great potential on new functionalities. In this dissertation, we first explore the Ni/Si(111) system with Ag buffer layers. When Ni is deposited on Si(111), Ni silicides form at room temperature and the stoichiometrics of Ni silicide show the formation of NiSi compounds. The formation of Ag-Si particles provide a viable strategy for enhancing silicide formation via a specific interaction transfer mechanism even at room temperature, and provides insights into strategies for producing ultrathin silicides at a buried interface. Furthermore, in our previous reports, we find out that the silver reconstruction layer is a flat surface and influence the silicide formations. So we try to compare the effect of the reconstruction layer on Co and Ni ultrathin films, respectively. We propose a molecular-incident reaction effect (MoRE) to explain the phenomena after depositing Co and Ni on -Ag/Si(111). The comparable of crystalline energy with the space groups can be used to make sure that the species of the dominant formation type as CoSi2 and NiSi, respectively. Ag buffer can significantly influence the magnetic properties of magnetic ultrathin films because of the effective magnetic anisotropy change. After capping 1 ML Ag on top, we observe a slight and significant enhancement of coercive force for as-deposited and annealed series, respectively. A further enhancement of coercive force can be observed for both as-deposited and annealed series after annealing to above 450 K. This observation results from the interdiffusion of Ni atoms towards the upper Ag buffer layers to have larger contact area between Ni and Ag interfaces.
Because my major is in the field of magnetic surface alloys and Ag buffer layers, the research results show great potential on the industrial applications. In the future, I would like to investigate different magnetic surface alloys and even surface alloys which can induce some ferromagnetic properties. Furthermore, I should find more buffer layers which can significantly influence the magnetic properties and may produce different magnetic properties in one sample after the interaction between buffer and magnetic layers. In order to find more direct evidence supporting our theoretical calculations, x-ray photoelectron spectroscopy mapping and synchrotron radiation can be utilized to investigate the surface morphology and compositions of our sample. Combined these fields of research, we can offer a more expansive range of applications on industry.
[1] J. Kim, S. Choi, T. Park, J. Kim, C. Kim, T. Cha, H. Lee, E. Lee, J. Y. Won, H. Lee, S. Hyun, S. Kim, D. Shin, Y. Kim, K. Kwon, and H. Kim, Chemically homogeneous and thermally robust Ni1-xPtxSi film formed under a non-equilibrium melting/quenching condition, ACS Appl. Mater. Interfaces, 2017, 9, 566–572.
[2] K. R. Jeon, B. C. Min, A. Spiesser, H. Saito, S. C. Shin, S. Yuasa and R. Jansen, Voltage tuning of thermal spin current in ferromagnetic tunnel contacts to semiconductors, Nature Mater.,2014 13, 360–366.
[3] T. Taniyama, E. Wada, M. Itoh and M. Yamaguchi, Electrical and optical spin injection in ferromagnet/semiconductor heterostructures, NPG Asia Mater., 2011, 3, 65–73.
[4] Y. C. Chou, W. Tang, C. J. Chiou, K. Chen, A. M. Minor and K. N. Tu, Effect of elastic strain fluctuation on atomic layer growth of epitaxial silicide in Si nanowires by point contact reactions, Nano Lett., 2015, 15, 4121–4128.
[5] J. A. Kittl, A. Lauwers, O. Chamirian, M. Van Dal, A. Akheyar, M. De Potter, R. Lindsay and K. Maex, Ni- and Co-based silicides for advanced CMOS applications, Microelectron. Eng., 2003, 70, 158.
[6] S. L. Cheng, R. H. Lai, Y. D. Huang, and H. C. Lin, Interfacial reactions and microstructural evolution of periodic Ni nanodot arrays on N2+-implanted amorphous Si substrates, Appl. Surf. Sci., 2017, 399, 313–321.
[7] C. Cassidy, J. Kioseoglou, V. Singh, P. Grammatikopoulos, C. Lal and M. Sowwan, Endotaxially stabilized B2-FeSi nanodots in Si (100) via ion beam co-sputtering, Appl. Phys. Lett., 2014, 104, 161903.
[8] S. P. Chiu, S. S. Yeh, C. J. Chiou, Y. C. Chou, J. J. Lin and C. C. Tsuei, Ultralow 1/f noise in a heterostructure of superconducting epitaxial cobalt disilicide thin film on silicon, ACS Nano, 2017, 11, 516–525.
[9] Y. Okuhara, D. Yokoe, T. Kato, S. Suda, M. Takata, K. Noritake and A. Sato, Solar-selective absorbers based on semiconducting β-FeSi2 for efficient photothermal conversion at high temperature, Sol. Energy Mater. Sol. Cells, 2017, 161, 240–246.
[10] X. Chen, J. Wang, K. Yang, C. Meng, C. T. Williams and C. Liang, Structure investigation and dibenzothiophene hydrodesulfurization properties of Fe-substituted Ni−Si intermetallics, J. Phys. Chem. C, 2015, 119, 29052–29061.
[11] O. Abbes, A. Melhem, C. Boulmer-Leborgne and N. Semmar, Establishment of optimized metallic contacts on silicon for thermoelectric applications, Adv. Mater. Lett., 2015, 6, 961–964.
[12] J. K. Tripathia, R. Levy, Y. Camus, M. Dascalu, F. Cesura, R. Chalasani, A. Kohn, G. Markovich and I. Goldfarb, Self-organized growth and magnetic properties of epitaxial silicide nanoislands, Appl. Surf. Sci., 2017, 391, 24–32.
[13] Y. T. Chow, B. H. Jiang, C. H. T. Chang and J. S. Tsay, Enhancing magnetic anisotropy energy by tuning the contact area of Ag and Ni at the Ag/Ni interface, Phys. Chem. Chem. Phys., 2018, 20, 1504–1512.
[14] J. S. Tsay, T. Y. Fu, M. H. Lin, C. S. Yang and Y. D. Yao, Microscopic interfacial structures and magnetic properties of ultrathin Co/Si(111) films, Appl. Phys. Lett., 2006 88, 102506.
[15] J. S. Tsay, T. Y. Fu, C. K. Kao, X. L. Huang, J. R. Shue, W. H. Chen and Y. D. Yao, Magnetic properties and microscopic structures of ultrathin Co/√3×√3 R〖30〗^°-Ag/Si(111) films, J. Korean Phys. Soc., 2013, 62, 1792.
[16] C. H. T. Chang, T. Y. Fu and J. S. Tsay, Interaction transfer of silicon atoms forming Co silicide for Co/ √3×√3 R〖30〗^°Ag/Si(111) and related magnetic properties, J. Appl. Phys., 2015, 117, 17B733.
[17] J. S. Tsay, Y. D. Yao, Y. Liou, S. F. Lee and C. S. Yang, Effect of Ag buffer layer to ultrathin Co films on Si(111) surface, IEEE Trans. Magn., 1999, 35, 3028.
[18] N. A. Kuzmina, I. L. Svetlov, and F. N. Karachevtsev, Distribution of substitutional alloying elements and interstitial impurities in in-situ multicomponent composites based on the Nb–Si system, Inorganic Materials: Applied Research, 2018, 9, 757–762.
[19] K. van Stiphout, F. A. Geenen, N. M. Santos, S. M. C. Miranda, V. Joly, J. Demeulemeester, C. Detavernier, F. Kremer, L. M. C. Pereira, K. Temst. and A. Vantomme, Impurity-enhanced solid-state amorphization: the Ni-Si thin film reaction altered by nitrogen, J. Phys. D: Appl. Phys., 2019, 52, 145301.
[20] C. H. T. Chang, W. H. Kuo, Y. C. Chang, J. S. Tsay and S. L. Yau, Tuning coercive force by adjusting electric potential in solution processed Co/Pt(111) and the mechanism involved, Sci. Rep., 2017, 7, 43700.
[21] T. Mangen, H. S. Bai, and J. S. Tsay, Structures and magnetic properties for electrodeposited Co ultrathin films on copper, J. Magn. Magn. Mater., 2010, 322, 1863–1867.
[22] W. R. Chen, T. C. Chang, P. T. Liu, P. S. Lin, C. H. Tu and C. Y. Chang, Formation of stacked Ni silicide nanocrystals for nonvolatile memory application, Appl. Phys. Lett., 2007, 90, 112108.
[23] C. H. T. Chang, S. C. Chang, J. S. Tsay, and Y. D. Yao,. Enhanced exchange bias fields for CoO/Co bilayers: influence of antiferromagnetic grains and mechanisms, Appl. Surf. Sci., 2017, 405, 316–320.
[24] L. L. Lev, D. V. Averyanov, A. M. Tokmachev, F. Bisti, V. A. Rogalev, V. N. Strocov and V. G. Storchak, Band structure of the EuO/Si interface: justification for silicon spintronics, J. Mater. Chem. C, 2017, 5, 192–200.
[25] C. L. Lin, A. W. Wu, Y. C. Wang, Y. C. Tseng, and J. S. Tsay, Spin reorientation transitions and structures of electrodeposited Ni/Cu(100) ultrathin films with and without Pb additives, Phys. Chem. Chem. Phys., 2013, 15, 2360–2367.
[26] H. C. Hsu, M. K. Jhou, W. C. Lin, and T. Y. Fu, Thermal evolution of Fe on Ge(111)-c(2×8) surface and the effect of √3×√3 R〖30〗^°-Ag–Ge buffer layer, Appl. Surf. Sci., 2015, 355, 778–783.
[27] T. Y. Fu, J. Y. Wu, M. K. Jhou, and H. C. Hsu, The role of Ag buffer layer in Fe islands growth on Ge (111) surfaces, J. Appl. Phys., 2015, 117, 17B724.
[28] C. S. Shern, H. Y. Ho, S. H. Lin and C. W. Su, Structure and magnetic properties of ultrathin Ni films on Pt(111) with Co buffer layers, Phys. Rev. B, 2004, 70, 214438.
[29] L. W. W. Fang, R. Zhao, K. G. Lim, H. Yang, L. Shi, T. C. Chong, and Y. C. Yeo, Phase change random access memory featuring silicide metal contact and high-k interlayer for operation power reduction, J. Vac. Sci. Technol. B, 2011, 29, 032207.
[30] P. J. Bora, S. Gupta, V. K. Pecharsky, K.J. Vinoy, P. C. Ramamurthy and R. L. Hadimani, Enhancement of microwave absorption bandwidth of polymer blend using ferromagnetic gadolinium silicide nanoparticles, Mater. Lett., 2019, 252, 178–181.
[31] H. M. Ji, M. C. Nguyen, A. H. T. Nguyen, J. Cheon, J. H. Kim, K. M. Yu, S. W. Kim, S. Y. Cho, J. H. Lee, and R. Choi, Optimal Nitrogen Incorporation in Nickel Silicide for Thermally Stable Contact Formation, J. Nanosci. Nanotechnol., 2019, Vol. 19, No. 10.
[32] G. G. Gumarov, A. V. Alekseev and V. Y. Petukhov, Magnetic properties of iron silicide films ion-synthesized in the field of mechanical stresses, J. Magn. Magn. Mater., 2019, 487, 165322.
[33] I. H. Hong, and S. W. Liu, Observation of the magnetization reorientation in self-assembled metallic Fe-silicide nanowires at room temperature by spin-polarized scanning tunneling spectromicroscopy, Coatings, 2019, 9, 314.
[34] P. Saravanana, S. Boominathasellarajana, B. Sobel, S. Wacławekc, V. T. P. Vinodc and M. Černíkc, Effect of CoSi2 interfacial layer on the magnetic properties of Si|CoSi2|Sm-Co thin films, J. Magn. Magn. Mater., 2020, 493, 165716.
[35] J. S. Tsay and Y. C. Liu, Magnetic properties of ultrathin Si/Co/Ir(111) films, J. Phys.: Condens. Matter., 2008, 20, 445003.
[36] J. S. Tsay, Y. D. Yao, Y. Lieu, S. F. Lee, and C. S. Yang, Effect of Ag buffer layer to ultrathin Co films on Si(ll1) surface, IEEE TRANSACTIONS ON MAGNETICS, 1999, 35, 3028-3030.
[37] J. S. Tsay, Y. D. Yao, Y. Liou, S. F. Lee and C. S. Yang, Comparison of magnetic properties of ultrathin Co/Si(111) and Co/Ag/Si(111) films, J. Magn. Magn. Mater., 2000, 209, 208-210.
[38] H. W. Chang, J. S. Tsay, Y. C. Hung, F. T. Yuan, W. Y. Chan, W. B. Su, C. S. Chang, and Y. D. Yao, Magnetic properties and microstructure of ultrathin Co/Si (111) films, J. Appl. Phys., 2007, 101, 09D124.
[39] H. W. Chang, J. S. Tsay, Y. C. Hung, W. Y. Chan, W. B. Su, C. S. Chang, and Y. D. Yao, Investigation of magnetic properties and microstructure of ultrathin Co films grown on Si(111)-7×7 surface, J. Nanosci. Nanotechnol., 2011, Vol. 11, 2696–2699.
[40] C. Chuang, W. Y. Chang, W. H. Chen , J. S. Tsay, W. B. Su, H. W. Chang and Y. D. Yao, Thickness dependent reactivity and coercivity for ultrathin Co/Si(111) films, Thin Solid Films, 2011, 519, 8371–8374.
[41] J. S. Tsay and Y. D. Yao, Magnetic phase diagram of ultrathin Co/Si(111) film studied by surface magneto-optic Kerr effect, Appl. Phys. Lett., 1999, 74, 1311.
[42] J. S. Tsay, Y. D. Yao and Y. Liou, Magnetic phase diagram study of ultrathin Co/Si(111) films, Surf. Sci., 2000, 454–456, 856–859.
[43] J. D. Boeck, W. V. Roy, J. Das, V. Motsnyi, Z. Liu, L. Lagae, H. Boeve, K. Dessein and G. Borghs, Technology and materials issues in semiconductor-based magnetoelectronics, Semicond. Sci. Technol., 2002, 17, 342–354.
[44] L. W. W. Fang, R. Zhao, E. G. Yeo, K. G. Lim, H. Yang, L. Shi, T. C. Chong, and Y. C. Yeo, Phase change random access memory devices with nickel silicide and platinum silicide electrode contacts for integration with CMOS technology, J. Electrochem. Soc., 2011, 158(3), H232-H238.
[45] N. D. Telling, P. S. Keatley, G. van der Laan, R. J. Hicken, E. Arenholz, Y. Sakuraba, M. Oogane, Y. Ando, and T. Miyazaki, Interfacial structure and half-metallic ferromagnetism in Co2MnSi-based magnetic tunnel junctions, Phys. Rev. B, 2006, 74, 224439.
[46] C. H. T. Chang, P. C. Jiang, Y. T. Chow, H. L. Hsiao, W. B. Su and J. S. Tsay, Enhancing silicide formation in Ni/Si(111) by Ag-Si particles at the interface, Sci. Rep., 2019, 9, 8835.
[47] S. Woo, T. Delaney and G. S. D. Beach, Magnetic domain wall depinning assisted by spin wave bursts, Nature Phys., 2017, 10, 1038.
[48] M. Cinchetti, V. A. Dediu, L. E. Hueso, Activating the molecular spinterface, Nature Mater., 2017, 16, 507-515.
[49] S. J. Chang, P. C. Chang, W. C. Lin, S. H. Lo, L. C. Chang, S. F. Lee and Y. C. Tseng, Voltage-induced interface reconstruction and electrical instability of the ferromagnet-semiconductor device, Sci. Rep., 2017, 7, 339.
[50] S. C. Chang, J. S. Tsay, C. H. T. Chang and Y. D. Yao, Pinning of magnetic moments at the interfacial region of ultrathin CoO/Co bilayers grown on Ge(100), Appl. Surf. Sci., 2015, 354, 95-99.
[51] A. S. Gouralnik, E. V. Pustovalov, K. W. Lin, A. L. Chuvilin, S. V. Chusovitina, S. A. Dotsenko, A. I. Cherednichenko, V. S. Plotnikov, V. A. Ivanov, V. I. Belokon, I. A. Tkachenko and N. G. Galkin, An approach to growth of Fe-Si multilayers with controlled composition profile - A way to exchange coupled thin films, Nanotechnology, 2017, 28, 115303.
[52] Q. Liu, X. Shao, F. Ming, K. Wang and X. Xiao, Adsorption and spin-related properties of multi-Co atoms assembled in the half unit cells of Si(111)-(7×7), New J. Phys., 2017, 19, 023048.
[53] Z. A. Isakhanov, T. Kodirov, A. S. Halmatov, M. K. Ruzibaeva, Z. E. Muhtarov and B. E. Umirzakov, Effect of Co+-ion implantation on the composition and properties of free Si–Cu nanofilm structures, J. Surf. Inves., 2017, 11, 152-154.
[54] Y. J. Chen, M. H. Kuo and C. S. Shern, Ag-induced spin-reorientation transition of ultrathin Fe films on Pt(111), Appl. Phys. Lett., 2008, 93, 012503.
[55] A. W. J. Wells, P. M. Shepley, C. H. Marrows and T. A. Moore, Effect of interfacial intermixing on the Dzyaloshinskii-Moriya interaction in Pt/Co/Pt, Phys. Rev. B, 2017, 95, 054428.
[56] P. V. Ong, N. Kioussis, P. K. Amiri and K. L. Wang, Oscillatory magnetic anisotropy and spin-reorientation induced by heavy-metal cap in Cu/FeCo/M (M = Hf or Ta): A first-principles study, Phys. Rev. B, 2016, 94, 174404.
[57] H. Bouchikhaoui, P. Stender, Z. Balogh, D. Baither, A. Hütten, K. Hono and G. Schmitz, Nano-analysis of Ta/FeCoB/MgO tunnel magneto resistance structures, Acta Mater., 2016, 116, 298-307.
[58] P. Sethi, S. Krishnia, S. H. Li and W. S. Lew, Modulation of spin-orbit torque efficiency by thickness control of heavy metal layers in Co/Pt multilayers, J. Magn. Magn. Mater., 2017, 426, 497-503.
[59] H. Zhou, F. Yu, Y. Huang, J. Sun, Z. Zhu, R. J. Nielsen, R. He, J. Bao, W. A. Goddard III, S. Chen and Z. Ren, Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam, Nature Commun., 2017, 7, 12765.
[60] X. D. Wang, Y. Cao, Y. Teng, H. Y. Chen, Y. F. Xu and D. B. Kuang, Large-area synthesis of a Ni2P honeycomb electrode for highly efficient water splitting, ACS Appl. Mater. Interfaces, 2017, 9, 32812–32819.
[61] S. J. Gutić, A. S. Dobrota, M. Leetmaa, N. V. Skorodumova, S. V. Mentus and I. A. Pašti, Improved catalysts for hydrogen evolution reaction in alkaline solutions through the electrochemical formation of nickel-reduced graphene oxide interface, Phys. Chem. Chem. Phys., 2017, 19, 13281–13293.
[62] S. Park, T. H. Seo, H. Cho, K. H. Min, D. S. Lee, D. Won, S. O. Kang and M. J. Kim, Facile synthesis of highly crystalline and large areal hexagonal boron nitride from borazine oligomers, Sci. Rep., 2017, 7, 40260.
[63] J. Liu, N. Dauphas, M. Roskosz, M. Y. Hu, H. Yang, W. Bi, J. Zhao, E. E. Alp, J. Y. Hu and J. F. Lin, Iron isotopic fractionation between silicate mantle and metallic core at high pressure, Nature Commun., 2017, 8, 14377.
[64] J. D. Schuler and T. J. Rupert, Materials selection rules for amorphous complexion formation in binary metallic alloys, Acta Materialia, 2017, 140, 366–374.
[65] L. Isern, S. Impey, H. Almond, S. J. Clouser and J. L. Endrino, Structure zone diagram and particle incorporation of nickel brush plated composite coatings, Sci. Rep., 2017, 7, 44561.
[66] B. E. Franco, J. Ma, B. Loveall, G. A. Tapia, K. Karayagiz, J. Liu, A. Elwany, R. Arroyave and I. Karaman, A sensory material approach for reducing variability in additively manufactured metal parts, Sci. Rep., 2017, 7, 3604.
[67] B. D. Miracle and O. N. A. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia, 2017, 122, 448–511.
[68] J. H. Kang, H. S. Noh, K. M. Kim, S. C. Lee and S. J. Kim,. Modified Ni equivalent for evaluating hydrogen susceptibility of Cr-Ni based austenitic stainless steels, Journal of Alloys and Compounds, 2017, 696, 869–874.
[69] D. Jiles, Introduction to Magnetism and Magnetic Materials, CRC Press, London, 3rd ed., 2015.
[70] U. Bovensiepen, P. Poulopoulos, M. Farle and K. Baberschke, The Curie temperature in ultrathin Ni/Cu(001) films determined by ac susceptibility and MOKE, Surf. Sci., 1998, 402-404, 396–400.
[71] M. V. Kamalakar and A. K. Raychaudhuri, Critical phenomena in magnetic nanowires, J. Nanosci. Nanotechnol., 2009, 9, 5248–5253.
[72] I. A. Kolmychek, V. L. Krutyanskiy, K. S. Gusev, T. V. Murzina, N. Tahir, Z. Kurant, A. Maziewski, J. Ding and A. O. Adeyeye, Anisotropy of magnetic properties in 2D arrays of permalloy antidots, J. Magn. Magn. Mater., 2016, 420, 1–6.
[73] B. L. Zink, M. Manno, L. O'Brien, J. Lotze, M. Weiler, D. Bassett, S. J. Mason, S. T. B. Goennenwein, M. Johnson, and C. Leighton, Efficient spin transport through native oxides of nickel and permalloy with platinum and gold overlayers, Phys. Rev. B, 2016, 93, 184401.
[74] S. Tengeler, B. Kaiser, D. Chaussende and W. Jaegermann, (001) 3C SiC/Ni contact interface: In situ XPS observation of annealing induced Ni2Si formation and the resulting barrier height changes, Appl. Surf. Sci., 2017, 400, 6–13.
[75] V. M. Dubin, M. O. Lisunova, I. O. Kovalenko, B. L. Walton, G. Downey, J. Su and K. Witt, Invar electroplating for controlled expansion interconnects, ECS Trans., 2016, 75, 33–40.
[76] I. N. Lund, J. HoLee, H. Efstathiadis, P. Haldar and R. E. Geer, Influence of catalyst layer thickness on the growth of nickel silicide nanowires and its application for Li-ion batteries, J. Power Sources, 2014, 246, 117.
[77] F. Li, H. Yue, P. Wang, Z. Yang, D. Wang, D. Liu, L. Qiao and D. He, Synthesis of core–shell architectures of silicon coated on controllable grown Ni-silicide nanostructures and their lithiumion battery application, Cryst. Eng. Comm., 2013, 15, 7298.
[78] H. V. Känel, Growth and characterization of epitaxial Ni and Co-silicide, Mater. Sci. Rep., 1992, 8, 193–269.
[79] Z. Du, S. N. Ellis, R. A. Dunlap, and M. N. Obrovac, NixSi1-x alloys prepared by mechanical milling as negative electrode materials for lithium ion batteries, J. Electrochem. Soc., 2016, 163, A13–A18.
[80] D. M. Collins, B. D. Conduit, H. J. Stone, M. C. Hardy, G. J. Conduit and R. J. Mitchell, Grain growth behaviour during near-gamma solvus thermal exposures in a polycrystalline nickel-base superalloy, Acta Mater., 2013, 61, 3378-3391.
[81] J. Fan, M. Guerrero, A. Carretero-Genevrier, M. D. Baró, S. Suriñach, E. Pellicer and J. Sort, Evaporation-induced self-assembly synthesis of Ni-doped mesoporous SnO2 thin films with tunable room temperature magnetic properties, J. Mater. Chem. C, 2017, 5, 5517-5527.
[82] B. Tang, D. A. Cogswell, G. Xu, S. Milenkovic, Y. Cui, The formation mechanism of eutectic microstructures in NiAl–Cr composites, Phys. Chem. Chem. Phys., 2016, 18, 19773-19786.
[83] W. C. Chen, P. Y. Yen, Y. C. Kuo, S. Z. Chen and S. L. Yau, Epitaxial electrodeposition of nickel on Pt(111) electrode, J. Phys. Chem. C, 2012, 116, 21343-21349.
[84] J. A. Garlow, L. K. Barrett, L. Wu, K. Kisslinger, Y. Zhu and J. F. Pulecio, Large-area growth of turbostratic graphene on Ni(111) via physical vapor deposition, Sci. Rep., 2016, 6, 19804.
[85] G. Etrl and J. Küppers, Low energy electrons and surface chemistry, VCH, Weinheim, 2nd ed., 1985.
[86] 楊正旭, 輔仁大學物理所碩士論文,超高真空中在矽晶片上成長鈷超薄膜之真空中量測磁性研究, 1999.
[87] Z. Q. Qiu and S. D. Bader, Surface magneto-optic Kerr effect, Rev. Sci. Instrum., 2000, Vol. 71, No. 3.
[88] D. A. Porter and K. E. Easterling, Phase transformations in metals and alloys, Chapman and Hall, England, London, 1992.
[89] G. Anderson, Thermodynamics of natural system, United States, New York, 2nd ed., 2005.
[90] S. Hassam and M. Gaune-Escard, Enthalpies of formation of Ag-Si, Au-Si and Ag-Au–Si liquid alloys at 1423 K, Ber. Bunsenges. Phys. Chem., 1983, 87, 785–792.
[91] H. G. Zolla and F. Spaepen, Calorimetric and magnetic determination of the interfacial enthalpy and heat of mixing in Ag(Ni) alloys, Acta Mater., 1999, 47, 8, 2391-2400.
[92] M. T. Johnson, P. J. H. Bloemenzx, F. J. A. den Broedery and J. J. de Vries, Magnetic anisotropy in metallic multilayers, Rep. Prog. Phys., 1996, 59, 1409–1458.
[93] F. C. Chen, Y. E. Wu, C. W. Su, and C. S. Shern, Ag-induced spin-reorientation transition of Co ultrathin films on Pt(111), Phys. Rev. B, 2002, 66, 184417.
[94] W. B. Zeper, F. J.A. M. Greidanus, P. F. Carcia, and C. Fincher, Perpendicular magnetic anisotropy and magneto‐optical Kerr effect of vapor‐deposited Co/Pt‐layered structures, J. Appl. Phys., 1989, 65, 4971.
[95] Z. Zhang, P. E. Wigen, and S. S. P. Parkin, Pt layer thickness dependence of magnetic properties in Co/Pt multilayers, J. Appl. Phys., 1991, 69, 5649.
[96] P. Beauvillain, A. Bounouh, C. Chappert, R. Me´gy, S. Ould-Mahfoud, J. P. Renard, P. Veillet, D. Weller, and J. Corno, Effect of submonolayer coverage on magnetic anisotropy of ultrathin cobalt films M/Co/Au(111) with M=Au, Cu, Pd, J. Appl. Phys., 1994, 76, 6078.
[97] B. N. Engel, M. H. Wiedmann, and C. M. Falco, Overlayer‐induced perpendicular anisotropy in ultrathin Co films, J. Appl. Phys., 1994, 75, 6401.
[98] T. Kingetsu, Large magnetic interface anisotropy in molecular beam epitaxy grown Pt/Co and Pt/Co/Ag superlattices, Jpn. J. Appl. Phys., 1994, Part 2 33, L106.
[99] A. Senhaji, G. Treglia, B. Legrand, N. T. Barret, C. Guillot and B. Villete, Is the segregation-dissolution kinetics driven by a surface local equilibrium? An answer via the kinetic tight-binding Ising model, Surf. Sci., 1992, 274, 297.
[100] A. Christensen, A. V. Ruban, P. Stoltze, K. W. Jacobsen, H. L. Skriver, J. K. Norskov and F. Besenbacher, Phase diagrams for surface alloys, Phys. Rev. B, 1997, 56, 5822.
[101] S. P. Kim, Y. C. Chung, S. C. Lee, K. R. Lee, K. H. Lee, Surface alloy formation of Co on Al surface: Molecular dynamics simulation, J. Appl. Phys., 2003, 93, 8564.
[102] N. R. Shivaparan, M. A. Teter and R. J. Smith, Composition and structure of the Co–Al interface for thin Co films deposited on Al(001) and Al(110) surfaces at room temperature, Surf. Sci., 2001, 476, 152.
[103] C. Cho, H. Bulou, J. Hommet, X. Le Cann, H. Magnan, P. Le Fe`vre and D. Chandesris, Influence of structural characteristics on magnetic properties in face-centered-tetragonal surface alloy of Fe/Pd(100) ultrathin films, Phys. Rev. B, 1999, 60, 4220.
[104] Y. J. Choi, I. C. Jeong, J. Y. Park, S. J. Kahng, J. Lee and Y. Kuk, Surface alloy formation of Fe on Cr(100) studied by scanning tunneling microscopy, Phys. Rev. B, 1999, 59, 10918.
[105] C. S. Shern, J. S. Tsay, H. Y. Her, Y. E. Wu and R. H. Chen, Response and enhancement of surface magneto-optic Kerr effect for Co–Pt(111) ultrathin films and surface alloy, Surf. Sci., 1999, 429, L497.
[106] J. Knudsen, A. U. Nilekar, R. T. Vang, J. Schnadt, E. L. Kunkes, J. A. Dumesic, M. Mavrikakis and F. Besenbacher, A Cu/Pt near-surface alloy for water−gas shift catalysis, J. Am. Chem. Soc., 2007, 129, 6485.
[107] C. Rameshan, W. Stadlmayr, C. Weilach, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. K. Gericke, R. Schlögl, N. Memmel, D. Zemlyanov, G. Rupprechter and B. A. Klötzer, Steam reforming of methanol on PdZn near-surface alloys on Pd(1 1 1) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS, J. Catal., 2010, 276, 110-113.
[108] K. M. Neyman, K. H. Lim, Z. X. Chen, L. V. Moskaleva, A. Bayer, A. Reindl, D. Borgmann, R. Denecke, H. P. Steinru¨ck and N. Ro¨sch, Microscopic models of PdZn alloy catalysts: structure and reactivity in methanol decomposition, Phys. Chem. Chem. Phys., 2007, 9, 3470.
[109] J. S. Tsay, T. Mangen and K. Wandelt, Kinetic study of the formation of a surface-confined Cu50Pt50 alloy, Thin Solid Films, 2001, 397, 152.
[110] T. Fujitani and J. Nakamura, The chemical modification seen in the Cu/ZnO methanol synthesis catalysts, Appl. Catal. A-Gen., 2000, 191, 111.
[111] J. S. Tsay, Y. D. Yao and C. S. Shern, Dynamic study of a surface-confined alloy in an ultrathin Ag/Pt(111) film, Phys. Rev. B, 1998, 58, 3609.
[112] S. Liu, L. Bonig and H. Metiu, The effect of island coalescence on island density during epitaxial growth, Surf. Sci., 1997, 392, L56.
[113] K. J. Laidler, A glossary of terms used in chemical kinetics, including reaction dynamics, Pure & Appl. Chem., 1996, Vol. 68, No. 1, pp. 149-192.
[114] B. Mishra, P. Kiruthika and A. Paul, Interdiffusion in the Cu–Pt system, J Mater Sci: Mater Electron, 2014, 25, 1778–1782.
[115] F. C. M. J. M. van Delft, M. J. K. van Groos, R. A. G. de Graaff, A. D. van Langeveld and B. E. Nieuwenhuys, Determination of surface debye temperatures by LEED, Surf. Sci., 1987, 189/190, 695.
[116] D. J. Spence and S. P. Tear, STM studies of submonolayer coverages of Ag on Ge(111), Surf. Sci., 1998, 398, 91.
[117] A. Tomaszewska, X. L. Huang, K. W. Chang and T. Y. Fu, Thermal evolution of the morphology of Ni/Ag/Si(111)- surface, Thin Solid Films, 2012, 520, 6551–6555.
[118] S. L. Tsay, C. Y. Kuo, C. L. Lin, W. C. Chen and T. Y. Fu, Thermal evolution of Co islands on Ag/Si(111)‐ and Ag/Ge(111)‐ surfaces, Surf. Interface Anal., 2008, 40, 1641.
[119] G. Rossi, X. Jin, A. Santaniello, P. DePadova and D. Chandesris, Evidence of eightfold coordination for Co atoms at the CoSi2/Si(111) interface, Phys. Rev. Lett., 1989, 62, 191.
[120] M. A. K. Zilani, L. Liu, H. Xu, Y. P. Feng, X. S. Wang and A. T. S. Wee, Nucleation of cobalt silicide islands on Si(111)-7×7, J. Phys. Condens. Matter., 2006, 18, 6987.
[121] T. Veres, M. Cai, R. W. Cochrane and S. Roorda, Ion-beam modification of Co/Ag multilayers I: Structural evolution and magnetic response, J. Appl. Phys., 2000, 87, 8504.
[122] W. Y. Chan, D. C. Tsai, W. H. Chen, C. H. T. Chang and J. S. Tsay, Enhancement of the polar coercive force for annealed Co/Ir(111) ultrathin films, J. Korean Phys. Soc., 2013, 62, 1945.
[123] J. S. Tsay, C. S. Shern, Structure evolution for annealing Co ultrathin films on Pt(111), Surf. Sci., 1998, 396, 313.
[124] R. F. Willis, Itinerant magnetism in ultrathin metallic films, Prog. Surf. Sci., 1997, 54, 277.
[125] D. Weller, H. Brandle, G. Gorman, C. J. Lin and H. Notarys, Magnetic and magneto‐optical properties of cobalt‐platinum alloys with perpendicular magnetic anisotropy, Appl. Phys. Lett., 1992, 61, 2726.
[126] S. Ferrer, J. Alvarez, F. Lundgren, X. Torrelles, P. Fajardo and F. Boscherini, Surface x-ray diffraction from Co/Pt(111) ultrathin films and alloys: Structure and magnetism, Phys. Rev. B, 1997, 56, 9848.
[127] C. H. T. Chang, S. C. Chang, J. S. Tsay and Y. D. Yao, Variation of blocking temperatures for exchange biased CoO/Co/Ge(100) films, AIP Adv., 2016, 6, 056101.
[128] J. Nogue´s and I. K. Schuller, Exchange bias, J. Magn. Magn. Mater., 1999, 192, 203.
[129] S. H. Kang and K. Lee, Emerging materials and devices in spintronic integrated circuits for energy-smart mobile computing and connectivity, Acta Mater., 2013, 61, 952.
[130] C. Chappert, A. Fert and F. N. V. Dau, The emergence of spin electronics in data storage, Nat. Mater., 2007, 6, 813.
[131] B. Holst, M. Nohlen, K. Wandelt and W. Allison, The growth of ultrathin Cu-films on Pt(111), probed by helium atom scattering and scanning tunnelling microscopy, Surf. Sci., 1997, 377, 891.
[132] B. Holst, M. Nohlen, K. Wandelt and W. Allison, Observation of an adlayer-driven substrate reconstruction in Cu-Pt(111), Phys. Rev. B, 1998, 58, R10195.
[133] M. V. Bollinger, J. V. Lauritsen, K. W. Jacobsen, J. K. Norskov, S. Helveg, F. Besenbacher, One-dimensional metallic edge states in MoS2, Phys. Rev. Lett., 2001, 87, 196803.
[134] A. A. Gokhale, Ph.D. Thesis, University of Wisconsin-Madison, Water gas shift reaction and Fischer Tropsch Synthesis on transition metal surfaces, 2005.
[135] R. C. O’Handley, Modern magnetic materials: principles and applications, Wiley, New York, 2000.
[136] M. Lindholm and B. Sundman, A thermodynamic evaluation of the nickel-silicon system, Metal. Mater. Trans., 1996, A 27A, 2897–2903.
[137] V. Hinkel, L. Sorba, H. Haak, K. Horn and W. Braun, Evidence for Si diffusion through epitaxial NiSi2 grown on Si(111), Appl. Phys. Lett., 1987, 50, 1257–1259.
[138] S. Tanuma, C. J. Powell and D. R. Penn, Calculations of electron inelastic mean free paths. III. Data for 15 inorganic compounds over the 50–2000 eV range, Surf. Interface Anal., 1991, 17, 911.
[139] D. R. Lide, CRC handbook of chemistry and physics, CRC Press, New York, 2003.
[140] W. G. Moffatt, The handbook of binary phase diagram, Genium Press, New York 1990.
[141] L. E. Davis, N. C. MacDonald, P. W. Palmberg, and G. Riach, Handbook of Auger electron spectroscopy: A reference book of standard data for identification and interpretation of Auger electron spectroscopy data, Physical Electronics, 2nd ed., 1978.
[142] D. Fiorani, Surface effects in magnetic nanoparticles, Springer, Otawa, Ontario, 2005.
[143] F. Widmann, B. Daudin, G. Feuillet, N. Pelekanos, and J. L. Rouvière, Improved quality GaN grown by molecular beam epitaxy using In as a surfactant, Appl. Phys. Lett., 1998, 73, 2642.
[144] M. Rubin, N. Newman, J. S. Chan, T. C. Fu, and J. T. Ross, p-type gallium nitride by reactive ionbeam molecular beam epitaxy with ion implantation, diffusion, or coevaporation of Mg, Appl. Phys. Lett., 1994, 64, 64.
[145] K. Y. Hsu, C. Y. Wang, and C. P. Liu, Growth and characteristics of self-assembly defect-free GaN surface islands by molecular beam epitaxy, J. Nanosci. Nanotechnol., 2011, Vol. 11, 3393-3398(6).
[146] R. Hentschke, Thermodynamics, Springer-Verlag, Berlin Heidelberg, 2014.
[147] B. Boren, Roentgenuntersuchung der Legierungen von silicium mit chrom, mangan, kobalt und nickel, Arkiv foer Kemi, Mineralogi och Geologi, A, 1933, 11, 1-28.
[148] F. Bertaut and P. Blum, Structure de disiliciure de cobalt, Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, 1950, 231, 626-628.
[149] A. K. Wolf, J. Glinnemann, L. Fink, E. Alig, M. Bolte and M. U. Schmidt, Predicted crystal structures of tetramethylsilane and tetramethylgermane and an experimental low-temperature structure of tetramethylsilane, Acta Cryst., 2010, B66, 229-236.
[150] M. Kh. Rabadanov, and M. B. Ataev, Atomic structure and enormous anisotropy of thermal expansion in NiSi single crystals. I. Refinement of structure models, Crystallogr. Rep., 2002, 47, 40-45.
[151] U. Beck, H. G. Neumann, and G. Becherer, Phasenbildung in Ni/Si-Schichten, Kristall und Technik, 1973, 8, 1125-1129.
[152] D. Errandonea, High-pressure studies of crystalline materials, MDPI, Basel, Switzerland, 2018.
[153] R. Bergholz, U. Gradmann, Structure and magnetism of oligatomic Ni(111) films on Re(0001), J. Magn. Magn. Mater., 1984, 45, 389-398.
[154] C. Peng, D. Dai, Y. He, The magnetic anisotropy and interlayer magnetic coupling of evaporated Ag/Ni multilayers, J. Magn. Magn. Mater., 1992, 110, 113-118.
[155] C. Kittel, Introduction to solid state physics,Wiley, 8th edn, 2004.
[156] A. Jablonski, C. J. Powell, Effective attenuation lengths for quantitative determination of surface composition by Auger-electron spectroscopy and X-ray photoelectron spectroscopy, J. Electron Spec. Rel. Phenomena, 2017, 218, 1-12.
[157] X. Chen, J. Guan, G. Sha, Z. Gao, C. T. Williams and C. Liang, Preparation and magnetic properties of single phase Ni2Si by reverse Rochow reaction, RSC Adv., 2014, 4, 653-659.
[158] J. Y. Lin, H. M. Hsu and K. C. Lu, Growth of single-crystalline nickel silicide nanowires with excellent physical properties, Cryst. Eng. Comm., 2015, 17, 1911-1916.
[159] A. Dahal, J. Gunasekera, L. Harringer, D. K. Singh and D. J. Singh, Metallic nickel silicides: Experiments and theory for NiSi and first principles calculations for other phases, J. Alloys Compd., 2016, 672, 110-116.