簡易檢索 / 詳目顯示

研究生: 王曉雯
論文名稱: 磊晶氮化鎵奈米線在藍寶石晶圓之製備及光電性質
Fabrication and photoelectrical properties of epi-GaN nanowires on sapphire
指導教授: 陳家俊
Chen, Chia-Chun
陳貴賢
Chen, Kuei-Hsien
林麗瓊
Lin, Li-Chyong
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 54
論文種類: 學術論文
相關次數: 點閱:203下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米線奈米管等一維奈米材料,因為在化學及物理上新穎且有趣的特
    性而受到廣大的重視,一維半導體結構也被視為作為奈米尺寸電及光電
    元件最普遍的材料。然而,處理這些奈米材料的電性接點相當不易,侷
    限了其應用。我們製備了一個新型的金屬-半導體-金屬(M-S-M)的紫外光
    偵測器,用磊晶氮化鎵奈米線作為光導材料。氮化鎵薄膜層用標準的微
    影蝕刻技術以及反應性離子蝕刻技術來製造出溝槽寬10微米的M-S-M結
    構。催化成長出連接兩端氮化鎵塊材的磊晶氮化鎵奈米線,其平均直徑
    50±5 奈米,長度10±2 奈米。光導量測顯示出氮化鎵奈米線在3.4eV有
    個內價帶躍遷的單一吸收。而且此紫外光偵測器量測出最大的反應度可
    達到4×104 A/W,這個值遠遠大於已知的氮化鎵薄膜紫外光偵測器兩個
    數量級以上。這樣高的光反應性或許來自於一維材料中較少的晶格散射
    以及較高的載子遷移率。

    One-dimensional (1D) nanostructures, such as NWs, NTs, have
    attracted much attention due to their novel and interesting properties in
    physics and chemistry. One-dimensional semiconducting structures have been
    served as the next generation materials to achieve the goal of nano-scaled
    electronic and optoelectronic devices. However, the difficulties in dealing
    with the electrical contacts on these nanosized materials have been limiting
    the potential applications of 1D nanostructures. In this work, we present the
    fabrication of a new ultra-violet (UV) detector with
    metal-semiconductor-metal (M-S-M) structure using epitaxially grown GaN
    nanowires (NWs) as the photoconducting materials. The GaN layer on the
    M-S-M structure was patterned in patches with 10 µm gaps by standard
    photolithography and reactive ion etching process. The catalyst-grown GaN
    NWs have average diameters of 50±5 nm and lengths of 10±2 µm and link
    the two side walls of the GaN block electrodes. Photoconductivity (PC)
    spectra show that the GaN NWs exhibit a single absorption at 3.4 eV which is
    attributed to the inter-band transition. The maximal responsivity of the GaN
    NWs UV-detector is around 4×104 A/W which is higher than the reported
    values for GaN films by two orders of magnitude. The origin of this high
    responsivity of the GaN NWs could be attributed to low lattice scattering and
    high carrier mobility in this low-dimensional material.

    Chapter 1. Introduction……………………………………………………1 1.1 .Introduction of Nanotechnology..............................................1 1.2 .III-Nitride Semiconductor....................................................................2 1.2.1 Optoelectronic properties and atomic structures………………..…….2 1.2.2 Structural and chemical properties of Galium Nitride……………..…4 1.3 . Vapor-Liquid-Solid (VLS) mechanism to grow nanowires………..………7 1.4 . Photoconductivity...................................................................................8 Chapter 2. Paper Review...........................................................................................9 2.1. Photodetectors of GaN Thin Film.......................................................9 2.2. Photodetectors of Nanowires .......................................................................16 2.2.1. Photoconduction studies on GaN nanowire transistors under UV illumination………………………………………………..……...…16 2.2.2. Photoconduction studies on ZnO nanowire Photodetectors and Optical Switches………………………………………………………..……18 Chapter 3. Experimental Procedure.....................................................................20 3.1. Fabrication of GaN-nanowire based MSM device.....................................20 3.2. Catalytic CVD growth of 1D GaN Nanowire...........................................22 3.3. Structural analysis and optical properties of GaN nanowires…………......24 3.3.1. Scanning electron microscopy (SEM) ...........................................24 3.3.2.High-Resolution Transmission Electron microscopy (HR-TEM) ....26 3.3.4.Cathodoluminescence Spectroscopy (CL)………………...27 3.4. Electrical measurement of GaN-nanowire MSM device…………………28 Chapter 4. Results and Discussion...................................................................29 4.1. Fabrication of Metal-Semiconductor-Metal structure...............................29 4.2. The analyses of Epi-GaN Nanowires.....................................................31 4.2.1.Morphology………………………......................................................31 4.2.2.Microstructure.................................................................................33 4.2.3.Optical properties ………………………………..……................35 4.3. Electrical properties of M-S-M structure.............................................38 4.3.1. Current-Voltage (I-V) measurement.............................................38 4.3.2. Photoconductivity spectra of GaN NWs M-S-M structure...............39 Chapter 5. Conclusions...............................................................................................46

    1. V. Bougrov, M. E. Levinshtein, S. L. Rumyantsev, A. Zubrilov, in
    Properties of Advanced SemiconductorMaterials GaN, AlN, InN, BN,
    SiC, SiGe . Eds. Levinshtein M.E., Rumyantsev S.L., Shur M.S., John
    Wiley & Sons, Inc., New York, (2001).
    2. J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, Jr., B.
    P. Keller, U. K. Mishra, S. P. DenBaars, Appl. Phys. Lett. 71, 2572,
    (1997).
    3. M. Leszczynski, H. Teisseyre, T. Suski, I. Grzegory, M. Bockowski, J.
    Jun, and S. Porowski, Appl. Phys. Lett. 69, 73, (1996).
    4. E. K. Sichel, J. I. Pankove, J. Phys. Chem. Solids 38, 330, (1977).
    5. V. Bougrov, M. E. Levinshtein, S. L. Rumyantsev, A. Zubrilov, in
    Properties of Advanced SemiconductorMaterials GaN, AlN, InN, BN,
    SiC, SiGe . Eds. Levinshtein M.E., Rumyantsev S.L., Shur M.S., John
    Wiley & Sons, Inc., New York, (2001).
    6. A. S. Barker, M. Ilegems, Phys. Rev. B 7, 743, (1973)
    7. D. D. Manchon, A. S. Barker, J. P. Dean, R. B. Zetterstrom, Solid State
    Commun. 8, 1227, (1970).
    8. J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, Jr., B.
    P. Keller, U. K. Mishra, S. P. DenBaars, Appl. Phys. Lett. 71, 2572,
    (1997).
    9. B. Monemar, Phys. Rev. B 10, 676, (1974).
    10. M. Leszczynski, H. Teisseyre, T. Suski, I. Grzegory, M. Bockowski, J.
    Jun, and S. Porowski, Appl. Phys. Lett. 69, 73, (1996).
    11. J. I. Pankove, Mater. Res. Soc. Symp. Proc. 162, 515 (1990).
    12. M. Razeghi, A. Rogalski, J. Appl. Phys. 79 (10) (1996) 7433–7473.
    13. D. Walker, X. Zhang, A. Saxler, P. Kung, J. Xu, M. Razeghi, Appl.Phys. Lett. 70 (8) (1997) 949–951.
    14. E. Muñoz, E. Monroy, J.A. Garrido, I. Izpura, F.J. Sánchez, M.A.
    Sánchez-Garc´ıa, E. Calleja, Appl. Phys. Lett. 71 (7) (1997) 870–872.
    15. P. Kung, X. Zhang, D. Walker, A. Saxler, J. Piotrowski, A. Rogalski,
    M. Razeghi, Appl. Phys. Lett. 67 (25) (1995) 3792–3794.
    16. Z.C. Huang, D.B. Mott, P.K. Shu, J.C. Chen, D.K. Wickenden, J.
    Electron. Mater. 26 (1997) 330–333.
    17. D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamilton, J. Diaz, M.
    Razeghi, Appl. Phys. Lett. 72 (25) (1998) 3303–3305.
    18. E. Monroy, T. Palacios, O. Hainaut, F. Omnès, F. Calle, J.F. Hochedez,
    Appl. Phys. Lett. 80 (17) (2002) 3198–3200.
    19. D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F.J. Sanchez, J.
    Diaz, M. Razeghi, Appl. Phys. Lett. 74 (5) (1999) 762–764.
    20. Q. Chen, J.W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M.Z.
    Anwar, M.A. Khan, D. Kuksenkov, H. Temkin, Appl. Phys. Lett. 70
    (17) (1997) 2277–2279.
    21. E. Monroy, F. Calle, E. Muñoz, F. Omnès, P. Gibart, J.A. Muñoz,
    Appl. Phys. Lett. 73 (15) (1998) 2146–2148.
    22. H.M. Chen, Y.F. Chen, M.C. Lee, M.S. Feng, , J. Appl. Phys. 82 (2)
    (1997) 899–901.
    23. A. Bonfiglio, G. Traetta, M. Lomascolo, A. Passaseo, R. Cingolani, J.
    Appl. Phys. 89 (10) (2001) 5782–5784.
    24. C.V. Reddy, K. Balakrishnan, H. Okumura, S. Yoshida, Appl. Phys.
    Lett. 73 (2) (1998) 244–246.
    25. D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu and M.
    Razeghi: Appl. Phys. Lett. 68 (1996) 2100.
    26. M. A. Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M.
    27. A. Khan, J. N. Kuznia, D. T. Olson, J. M. Blasinghame and A. R.
    Bharrarai: Appl. Phys. Lett. 63 (1993) 2455.
    28. M. A. Khan, M. S. Shur and Q. Chen: Electron. Lett. 31 (1995) 398.
    29. Z. M. Zhao, R. L. Jiang, P. Chen, D. J. Xi, Z. Y. Luo, R. Zhang, B.
    Shen, Z. Z. Chen, and Y. D. Zheng, Appl. Phys. Lett. 77 (2000) 444.
    30. Zhizhen Ye, Xing Gu, Jingyun Huang, Yu Wang, Qinghui Shao and
    Binghui Zhao, Inter, J, Mod, Phys,B Vol. 16(2002) 4310-4313.
    31. Bo Shen, Kai Yang, Lan Zang, Zhi-zhong Chen, Yu-gang Zhou, Peng
    Chen,
    Rong Zhang, Zheng-chun Huang, Hao-shen Zhou and You-dou Zheng,
    Jpn. J. Appl. Phys. Vol. 38 (1999) pp. 767–769.
    32. Z. C. Huang, D. B. Mott, and P. K. Shu R. Zhang and J. C. Chena) D.
    K. Wickenden J. Appl. Phys. 82 (5), 1 September 1997.
    33. M. De Vittorio a,, B. Pot`ı a, M.T. Todaro c, M.C. Frassanito a, A.
    Pomarico a, A. Passaseo a, M. Lomascolo b, R. Cingolani aSensors
    and Actuators A 113 (2004) 329–333.
    34. Z. M. Zhao,a) R. L. Jiang, P. Chen, D. J. Xi, B. Shen, R. Zhang, and Y.
    D. ZhengJ. Vac. Sci. Technol. B 19.1., JanÕFeb 2001.
    35. C. Dekker, Phys. Today 1999, 52, 22.
    36. S. J. Tans, R. M. Verschueren, C. Dekker, Nature 1998, 393, 49.
    37. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, P. Avouris, Appl. Phys.
    Lett. 1998, 73, 2447.
    38. S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J.
    Geerligs, C. Dekker, Nature 1997, 386, 474.
    39. M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A.
    Thess, R. E. Smalley, Science 1997, 275, 1922.
    40. J. Hu, M. Ouyang, P. Yang, C. M. Lieber, Nature 1999, 399, 48.
    41. Z. Yao, H. W. C. Postma, L. Balents, C. Dekker, Nature 1999, 402,
    273.
    42. M. S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y. Yoon, M. S. C.
    Mazzoni, H. J. Choi, J. Ihm, S. G. Louie, A. Zettl, P. L. McEuen,Science 2000, 288,494.
    43. X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature 2001, 409,
    66.
    44. Song Han, Wu Jin, Daihua Zhang, Tao Tang, Chao Li, Xiaolei Liu,
    Zuqin Liu, Bo Lei, Chongwu Zhou, Chemical Physics Letters 389
    (2004) 176–180
    45. Hannes Kind, Haoquan Yan, Benjamin Messer, Matthew Law, and
    Peidong Yang, Adv. Mater. 2002, 14, No. 2, January 16

    QR CODE