簡易檢索 / 詳目顯示

研究生: 蔡博翔
Tsai, Po-Hsiang
論文名稱: 下肢外骨骼機器人輔助人體跨步平衡控制
Stepping Balance Control through Assistance of a Lower-Limb Exoskeleton Robot
指導教授: 陳俊達
Chen, Chun-Ta
口試委員: 陳俊達
Chen, Chun-Ta
林志哲
Lin, Chih-Jer
陳金聖
Chen, Chin-Sheng
口試日期: 2023/01/11
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 82
中文關鍵詞: 下肢外骨骼機器人跨步平衡PID控制滑模模糊控制
英文關鍵詞: Lower-Limb exoskeleton robot, Stepping balance, PID Control, Fuzzy Sliding Mode Control
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300190
論文種類: 學術論文
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文「下肢外骨骼機器人輔助人體跨步平衡控制」旨在設計一下肢外骨骼機器人在人體受到較大外力撞擊時能輔助人體跨出步伐以維持平衡。本文利用足底壓力感測器量測人體之足底壓力中心(Center of Pressure, CoP)位置及大小,並以此作為是否進行跨步平衡之依據。安裝於下肢外骨骼機器人之感測器及編碼器則用來計算外骨骼之姿態,並藉由線性倒單擺模型推導出能使人體平衡之跨步位置捕獲點(Capture Point, CP),再透過人工勢場(Artificial potential field)設計運動軌跡及使用逆運動學將末端點運動軌跡轉換為各關節之角度。控制器以計算出之角度與實際角度間之誤差作為控制輸入,使用PID控制及滑模模糊控制(Fuzzy Sliding Mode Control, FSMC)並探討其效果,最後穿戴於正常人與輕度帕金森氏症患者並輔助其受到外力干擾後的跨步平衡。

    The main purpose of this thesis “Stepping Balance Control through Assistance of a Lower-Limb Exoskeleton Robot” aims to design a lower-limb exoskeleton robot that can assist the human body to take a step for maintaining balance when hitting with a large external force. In this thesis, the plantar pressure sensor is used to measure the position and size of the Center of Pressure (CoP) of the human body, which is used as the basis for taking step to maintain balance. Sensors and Encoders on the lower-limb exoskeleton robot are used to calculate the attitude of the exoskeleton. Linear Inverted Pendulum Model is used to derive the Capture Point (CP), and design a trajectory through Artificial Potential Field, then uses Inverse Kinematics to convert the design trajectory into the angle of each joint. The PID control and Fuzzy Sliding Mode Control (FSMC) are selected as controllers and dicuss its effect. Finally, normal people and patients with Parkinson's disease wears the lower-limb exoskeleton to assist their stepping balance after being disturbed by external forces.

    第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 11 1.4 論文架構研究方法 12 第二章 下肢外骨骼機器人架構介紹 13 2.1 下肢外骨骼機器人系統架構 13 2.2 下肢外骨骼機器人硬體 14 2.2.1 髖關節設計 15 2.2.2 膝關節設計 16 2.2.3 踝關節設計 17 2.2.4 電源供應器 18 2.2.5 運動控制卡 19 2.2.6 感測器 20 2.3 Lisole智能感壓鞋墊 21 第三章 跨步恢復平衡穩定設計 23 3.1 平衡穩定設計架構 23 3.2 捕獲點(Capture Point) 24 3.3 線性倒單擺模型 25 3.4 人工勢場設計 27 3.4.1 梯度下降法 28 3.5 逆運動學 29 第四章 控制器設計 31 4.1 PID控制器設計 31 4.2 模糊滑模控制器設計(Fuzzy Sliding Model Control, FSMC) 32 第五章 實驗結果與討論 37 5.1 Matlab模擬人工勢場設計 37 5.1.1 引力場之設計常數 k 37 5.1.2 斥力場之設計常數 η 39 5.1.3 腳受地面假想斥力影響之最大範圍 ρ 40 5.1.4 梯度下降法之參數 γ 42 5.1.5 人工勢場設計結果 43 5.2 正常受試者之跨步平衡實驗 45 5.2.1 基於PID控制之跨步平衡 46 5.2.1.1 推力13.03 kg 捕獲點位置30.64 cm 47 5.2.1.2 推力11.55 kg 捕獲點位置34.53 cm 50 5.2.1.3 推力11.61 kg 捕獲點位置41.96 cm 52 5.2.1.4 推力13.16 kg 捕獲點位置46.75 cm 55 5.2.2 基於FSMC控制之跨步平衡 57 5.2.2.1 推力10.51 kg 捕獲點位置23.18 cm 58 5.2.2.2 推力11.5 kg 捕獲點位置26.83 cm 61 5.2.2.3 推力12.16 kg 捕獲點位置43.19 cm 63 5.2.3 外骨骼機器人輔助巴金森氏症患者之跨步平衡 66 5.2.3.1 第二期巴金森氏症之64歲男性受試者 66 5.2.3.2 第一期巴金森氏症之71歲女性受試者 70 5.2.3.3 第一至二期間巴金森氏症之70歲男性受試者 73 第六章 結論與未來展望 77 參考文獻 78 附錄1 下肢外骨骼之動力學模型 80

    [1] WHO Global Health Estimates (2014), https://www.who.int/data/global-health-estimates
    [2] Winter, D.A., “Human balance and posture control during walking”, Gait and Posture 3, pp.193-214, 1995.
    [3] A.L. Hof, M.G.J. Gazendam, W.E. Sinke, “The condition for dynamic stability”, Journal of Biomechanics 38, 1–8, 2005.
    [4] Benjamin Stephens, “Humanoid push recovery”, 7th IEEE-RAS International Conference on Humanoid Robots, 2007
    [5] Che-Hsuan Chang, Han-Pang Huang, Huan-Kun Hsu, Ching-An Cheng, “Humanoid robot push-recovery strategy based on CMP criterion and angular momentum regulation”, IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2015
    [6] Jerry Pratt, John Carff, Sergey Drakunov, Ambarish Goswami, “Capture Point: A Step toward Humanoid Push Recovery”, 6th IEEE-RAS International Conference on Humanoid Robots, 2006.
    [7] Awais Yasin, Qiang Huang, Qian Xu, M. Saad Sultan, “Humanoid robot push recovery through foot placement”, IEEE International Conference on Mechatronics and Automation, 2012.
    [8] Mingguo Zhao, Siyuan Yu, “Push recovery by stepping with step timing adjustment”, IEEE International Conference on Robotics and Biomimetics (ROBIO), 2017.
    [9] Wei Yu, Gang Bao, Zuwen Wang, “Effects of Joint Torque Constraints on Humanoid Robot Balance Recovery in the Presence of External Disturbance”, IEEE International Conference on Robotics and Biomimetics (ROBIO), 2009.
    [10] Ildar Farkhatdinov, Julia Ebert, Gijs van Oort, Mark Vlutters, Edwin van Asseldonk, Etienne Burdet, “Assisting Human Balance in Standing With a Robotic Exoskeleton”, IEEE Robotics and Automation Letters, 4(2), April 2019.
    [11] Chih-Cheng Liu, Tsu-Tian Lee, Sheng-Ru Xiao, Yi-Chung Lin, Yi-Yang Lin, Ching-Chang Wong, “Real-Time FPGA-Based Balance Control Method for a Humanoid Robot Pushed by External Forces” Applied Sciences, 10(8), pp.2699, 2020.
    [12] Lufeng Luo, Hanjin Wen, Qinghua Lu, Haojie Huang, Weilin Chen, Xiangjun Zou, Chenglin Wang, “Collision-Free Path-Planning for Six-DOF Serial Harvesting Robot Based on Energy Optimal and Artificial Potential Field”, Complexity, vol. 2018, November 2018.
    [13] Qingni Yuan, Junhui Yi, Ruitong Sun, Huan Bai, “Path Planning of a Mechanical Arm Based on an Improved Artificial Potential Field and a Rapid Expansion Random Tree Hybrid Algorithm”, Algorithms, 14(11), pp.321, 2021.
    [14] J.G. Ziegler, N.B. Nichols, “Optimum settings for automatic controllers”, Transactions of the ASME, 64, pp.759-768, 1942.
    [15] Shuchao Cao, Jun Zhang, Weiguo Song, Chang’an Shi , Ruifang Zhang, “The stepping behavior analysis of pedestrians from different age groups via a single-file experiment”, Journal of Statistical Mechanics: Theory and Experiment, vol. 2018, March 2018.
    [16] A.L. Hof, “The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking”, Human Movement Science ,27(1), pp.112-125, February 2008.
    [17] 巴金森氏症之照護_北榮醫護,https://ihealth.vghtpe.gov.tw/media/506

    無法下載圖示 電子全文延後公開
    2025/02/28
    QR CODE