研究生: |
游智名 YU CHIH-MING |
---|---|
論文名稱: |
基於腦波訊號發展注意力辨識系統 |
指導教授: |
陳志銘
Chen, Chih-Ming 洪欽銘 Hong, Chin-Ming |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | 腦波訊號 、CPT 、小波轉換 、支持向量機 、基因演算法 |
論文種類: | 學術論文 |
相關次數: | 點閱:259 下載:21 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用CPT持續注意力測驗檢測受試者的注意力高低,以獲得對應之高低注意力腦波訊號,作為訓練與測試樣本,在腦波訊號處理上則採用小波轉換,據此從將不同腦波頻帶中抽取出影響注意力高低的特徵值,並利用基因演算法進行特徵選取,以有效找出影響注意力高低的主要腦波訊號特徵,再以支持向量機建立高低注意力辨識模型,據此發展出基於腦波訊號之注意力辨識系統,結果顯示本研究所發展系統的整體辨識率高達90.39%,可以有效辨識注意力高低。
本研究亦將基於腦波訊號之注意力辨識系統與具標記功能之影片撥放器進行整合,使得整合之系統可以偵測出學習者在觀看影片時注意力較為低落的影片片段,並據此進行低注意力影片片段的補救學習,以提升學習成效。經由多重實驗的驗證,顯示本研究發展之系統在辨識學習者的低注意力時間點上的準確率、召回率以及F測量值,均達一定程度的水準,並且系統偵測出的受試者低注意力時間點個數與學習成效呈現顯著的負相關性;低注意力時間點個數與基於低注意力時間點影片段之補救學習後的進步成績,亦呈現顯著的負相關。顯示本研究所發展之系統確實可以有效辨識出學習者在學習過程中的高低注意力。
A Continuous Performance Test was conducted in this research to assess subjects’ attention levels. The corresponding brainwave signals collected were then used as the training and testing samples. Wavelet Transform was employed for signal processing. Features affecting the attention levels were extracted from various bands of brainwaves to perform a Genetic Algorithm for feature selection. An attention measuring model was generated with the Support Vector Machine after key features were captured and finally produced the Attention Recognition System. The System has yielded a total recognition rate of 90.39% that could effectively recognize subjects’ attention levels.
A time-stamped supported video player was further integrated for learning result improvement during low-attending periods via remedial instructions. The results showed high precise rate, recall rate and F measurement value. Negative correlations of learning results and numbers of low-attending period as well as numbers of low-attending period and the range of improvement after remedial instruction were found. In sum, the Attention Recognition System can efficiently and effectively recognize individuals’ high and low attention level during the learning process.
英文部分
[1] M. Murugappan, R. Nagarajan and S. Yaacob, “Classification of Human Emotion from EEG Using Discrete Wavelet Transform,” Biomedical Science and Engineering, pp. 390-396, 2010.
[2] Harmony, T., Feranndez, T., Antonio, F.B., Juan, S.P., Bosch, J., Lourdes, D.C., and Galan L.,“EEG changes during word and figure categorization”Clinical Neurophysiology, vol.112, pp.1486-1498, 2001.
[3] Wolpaw J. R., McFarland D. J., Neat G. W. and Forneris C. A.,“An EEG-based brain-computer interface for cursor control,”Electroencephalography and neurophysiology, vol.78, pp.252-259, 1991.
[4] Schalk G., McFarland D. J., Hinterberger T., Birbaumer, N. and Wolpaw J. R.,“BCI2000:A General-Purpose Brain-Computer Interface (BCI) System,” IEEE transactions on bio-medical engineering, vol. 51, no. 6, pp.1034-1043, 2004.
[5] Scherer R., Müller G. R., Neuper C., Graimann B., and Pfurtscheller G., “An asynchronously controlled EEG-based virtual keyboard : improvement of the spelling rate,” IEEE transactions on biomedical engineering, vol.51, no. 6, pp.979-984, 2004.
[6] Wolpaw J. R., Birbaumer N., McFarland D. J., Pfurtscheller G. and Vaughan T. M., “Brain-computer interface for communication and control,” Clinical Neurophysiology, vol.113, pp.767-791, 2002.
[7] Y. Zheng, G. Zhu, S. Jiang, Q. Huang and W. Gao, “Visual-aural attention modeling for talk show video highlight detection,” IEEE Int. Conf. on Acoustics, Speech and Signal Processing, pp. 2213–2216, March 2008.
[8] Treisman A., “Strategies and models of selective attention,” Psychological Review, vol.76, no.3, pp.282- 299, 1969.
[9] Parasuraman R. and David D. R., Varieties of attention, Orlando:Academic Press, 1984.
[10] Klorman R., “Cognitive event-related postentials in attention deficit disorder,”Journal of Learning Disabilities, vol.24, no.3, pp.130-141, 1991.
[11] Guest Editors, “Guest editorial the third international meeting on brain-computer interface technology: making a difference,” IEEE Transactions on Rehabilitation Engineering, vol. 14, no. 2, pp.126-127, 2006.
[12] R. Cooper, J. W. Osselton and J. Crosley Shaw, EEG Technology, Butterworth, 3rd Edition, pp. 1-2, 1980.
[13] Nahm W., Stockmanns G., Petersen J., Gehring H., Konecny E., Kochs H. D. and Kochs E., “Concept for an intelligent anaesthesia EEG monitor,” Medical Informatics and the Internet in Medicine, vol.24, March 1999.
[14] Jeong J.,“EEG dynamics in patients with Alzheimer’s disease,”Clin. Neurophysiol, vol.115, pp.1490–1505, 2004.
[15] Weng W. and Khorasani K., “An adaptive structure neural network with application to EEG automatic seizure detection,” Neural Network, vol. 9, pp. 1223–1240, August 1996.
[16] Pfurtscheller G., Müller G. R., Pfurtscheller J., Gerner H. J. and Rupp R., “Thought-control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia,” Neuroscience letters, vol.351, pp.33-36, 2003.
[17] Webster J. G., “Electroencephalography: Brain electrical activity,” Encyclopedia of medical devices and instrumentation, vol.2, pp. 1084-1107, 1988.
[18] Sanei S. and J. A. Chambers, EEG Signal Processing, John Wiley & Sons Ltd, 2007.
[19] T. K. Gregory and D. C. Pettus, “An Electroencephalographic Processing Algorithm Specifically Intended for Analysis of Cerebral Electrical Activity,” Journal of Clinical Monitoring and Computing, pp. 190-197, 2005.
[20] S. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 11, No. 7, Jul. 1989, pp. 674-693.
[21] A. Grossman and J. Morlet, “Decompositions of Hardy Functions into Square Integrable Wavelets of Constant Shape,” SIAM Journal of Mathematical Analysis, Vol. 15, No.4, Jul. 1984, pp. 723-736.
[22] Meyer. Y., “Real analysis and operator theory,” Pseudo-differential operators and applications, Proc. Svmp. Pure Math, 4S, pp.219-235, 1985.
[23] S. G. Mallat, “A theory for multiresolution signal decomposition: thewavelet representation,” Pattern Analysis and Machine Intelligence, vol. 11, no.7, pp. 674-693, July 1989.
[24] I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Communications on Pure and Applied Mathematics, vol. 41, no. 7, pp. 909-996, 1988.
[25] Newland D. E., An Introduction to Random Vibrations, Spectral and Wavelet Analysis Longman Scientific & Technical, England, 1993.
[26] C. P. Shen, C. C. Chen, S. L. Hsieh, W. H. Chen, J. M. Chan, C. M. Chen, F. Lai and M. J. Chiu, “High-Performance Seizure Detection System Using a Wavelet-Approximate Entropy-fSVM Cascade With Clinical Validation,” EEG and Clinical Neuroscience Society (ECNS), doi:10.1177/1550059413483451., April 2013.
[27] Steven. M. Pincus, “Approximate entropy as a measure of system complexity,” Proc. Natl. Acad. Sci. USA, vo1.88 , pp2297-2301. , March 1991.
[28] L. Chen, W. Luo, Y. D. Zhen and S. Zeng, “Characterizing the complexity of spontaneous electrical signals in cultures neuronal networks using approximate entropy,” IEEE Trans. Information Technology in Biomedicine, vol. 13, no. 3, pp. 405-410, May 2009.
[29] L. I. Rudin, S. Osher and E. Fatemi. “Nonlinear total variation based noise removal algorithms,” Physical D, vol. 60, pp.259-268,1992.
[30] Feng Zhao Mingzhu Shi and Tingfa Xu, “A New Image Restoration Model Based on the Adaptive Total Variation,” Digital Manufacturing and Automation (ICDMA),vol. 1, pp. 63-66, December 2010.
[31] C. J. Lin, “A formal analysis of stopping criteria of decomposition methods for support vector machines,” IEEE Trans. Neural Network, vol.13, no.5, pp.1045-1052, Sep. 2002.
[32] C. J. Lin, “On the convergence of the decomposition method for support vector machines,” IEEE Trans. Neural Network, vol.12, no.6, pp.1288-1298, Nov. 2001.
[33] Hsu C. W., Lin C. J., “A comparison of methods for multi-class support vector machines,” IEEE Trans. on Neural Networks, vol.13, no.2, pp.415-42, Mar 2002.
[34] Clark L., Kempton M.J., and Scarnà A., “Sustained Attention-Deficit Confirmed in Euthymic Bipolar Disorder but Not in First-Degree Relatives of Bipolar Patients or Euthymic Unipolar Depression,” Biol Psychiatry, vol.57, pp.183–187, 2005.
[35] L. Wang, G. Xu, J. Wang, S. Yang, L. Guo, and W. Yan, “GA-SVM based feature selection and parameters optimization for BCI research,” Natural Computation (ICNC), Vol. 1, pp.580-583, July 2011.
中文部分
[36] 吳清山、林天祐,“教育小辭書”,五南圖書出版有限公司,2005。
[37] 宋淑慧,“多向度注意力測驗編製之研究”,國立彰化師範大學特殊教育研究所碩士論文,1992。
[38] 鄭昭明,“認知心理學”,桂冠圖書公司,2006。
[39] 王緒溢, 梁仁楷, 劉子鍵, 柯華葳, 陳德懷,黃智偉,“應用於教室內之高互動教學環境設計-無線測驗系統與網路教學資訊管理系統之整合應用”, Glboal Chinese Conference on Computers in Education / International Conference on Computer-Assisted instruction, Vol.2, pp.1016-1023. , 2001.
[40] 鄭昭明,“認知心理學理論與實踐”,桂冠圖書股份有限公司,1993。
[41] 楊坤堂,“注意力不足過動異常:診斷與處遇”,五南圖書出版有限公司,2000。
[42] 黃勝輝,“基於學習專注力發展自律學習機制提升網路學習成效”,國立臺灣師範大學應用電子科技學系碩士論文,2012。
[43] 郭建成,“學習專注力監測提醒系統對於提升課堂教學成效之影響研究”,國立臺灣師範大學工業教育學系碩士論文,2012。
[44] 廖允在,“腦波即時監控系統開發-音樂對腦波影響之案例研究”,國立雲林科技大學電子工程所碩士論文,2007。
[45] 龔充文,“注意力:認知神經科學的取向,載於陳烜之主編:認知心理學”,131-169頁,五南圖書出版有限公司,2007。
[46] 鄭麗玉,“認知心理學:理論與應用”,五南圖書出版有限公司,2006。
[47] 鍾聖校,“認知心理學”,台北:心理出版社,1990。
[48] 廖新春,“注意力訓練電腦輔助方案對中重度智能不足兒童注意力行為訓練效果之研究”,特殊教育研究學刊,2,177-206,1986。
[49] 郭旭鍾,“實施兒童讀經教學方案對國小一年級學童注意力影響之研究”,台北市立教育大學課程與教學研究所碩士論文,2007。
[50] 黃秀瑄(譯),認知心理學(原作者:Best, John B.),臺北市:心理,2009。
[51] 林崇德,“小學生心理學”,台北市:五南,1995。
[52] 多湖輝,“如何集中注意力”,台北:九大,1991。
[53] 洪偉哲,“以小波轉換鑑別人類情緒腦電波”,國立臺灣師範大學機電科技學系碩士論文,2011。
[54] 劉時廷,“多通道腦波特徵抽取及分析之癲癇預測系統”,國立台灣大學生醫電子與資訊學研究所碩士論文,2012。
[55] 蕭善勻,“應用近似熵及自我迴歸實現比流器飽和偵測與修正”,國立台北科技大學自動化科技研究所碩士論文,2008。
[56] 林宏欣,“植基於遺傳演算法之模糊灰色預測控制器設計及應用”,國立臺灣師範大學工業教育學系碩士論文,1996。
[57] 林豐澤,“演化式計算下篇:基因演算法以及三種應用實例”,智慧科技與應用統計學報,第三卷,第一期,29-56,2005。
[58] 沈家平,“心電圖訊號分析演算法與硬體架構設計”,國立臺灣師範大學工業教育學系碩士論文,2007。