研究生: |
吳政翰 |
---|---|
論文名稱: |
含氮三五族半導體雷射結構的光學躍遷 Optical Transitions of (III-V-N) Semiconductor Laser structures |
指導教授: | 陸健榮 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 氮砷化鎵銦 、量子井 、光調制反射實驗 、光激螢光實驗 、波函數 |
論文種類: | 學術論文 |
相關次數: | 點閱:263 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們分別以光調制反射實驗(PR)和光激螢光實驗(PL)來研究由分子束磊晶法(MBE)所長成的一系列含氮三五族半導體雷射結構樣品,此系列的特徵是都含 。並加以比較有無熱退火處理對實驗譜圖的影響和GaAsN緩衝層對樣品間實驗譜圖的影響。
樣品由於應力對能帶結構的影響,實驗結果觀察到受應力作用後的躍遷能量,我們並利用MATLAB程式推算出量子井的躍遷能量,計算所得躍遷能量到的也符合調制光譜的實驗結果。接下來我們將所得的能量本徵值帶回原轉換矩陣,可求得樣品的電子能級波函數,並探討波函數和調制光譜實驗譜形的關係。
We have investigated (III-V-N) semiconductor laser structures grown by Molecular Beam Epitaxy (MBE) using photoreflectance and photoluminescence at various temperatures. The investigated laser structures all contain quantum well, and some of them have buffer layers. We have studied effects of rapid thermal annealing and buffer layer on the optical properties.
All the principal optical transitions in strained (III-V-N) semiconductor laser structures were analyzed. The matrix transfer algorithm was used to calculate transition energies and electronic wavefunctions of the quantum well. The transitions involving the confined quantum states are compared with observed spectral features. The distribution of the calculated electronic wavefunction may explain the intensity variation of the spectral features.
參考文獻
1. Appl. phys. Lett. Vol. 75 , 4. 26 July 1999
2. Jpn. J. Appl. Phys. 31 (1992) Pt. 2,No.7A
3. I.A. Buyanova et al. /Materials Science and Engineering B75 (2000)166-169
4. Solid State Communications 112 (1999) 443-447
5. M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, IEEE J. Select. Topics Quantum Electron, 3, 719, (1997).
6. Z. Pan, T. Miyamoto, D. Schlenker, S. Sato, F. Koyama and K. Iga, J. Appl. Phys. 84, 6409, (1998).
7. Shunichi Sato, “Low Threshold and High Characteristic Temperatuer 1.3μm Range GaInNAs Lasers Grown by Metalorganic Chemical Vapor Deposition”, Jpn. J. Appl. Phys., Vol. 39, pp. 3403-3405 (2000).
8. Z. Pan, L. H. Li, Y. W. Lin, B. Q. Sun, and D. S. Jiang, “Conduction band offset and electron effective mass in GaInNAs/GaAs quantum-well structures with low nitrogen concentration”, Appl. Phys. Lett., Vol. 78, pp. 2217-2219 (2001).
9. M. Hetterich and M. D. Dawson, “Electronic states and band alignment in GaInNAs/GaAs Quantum-well structures with low nitrogen content”, Appl. Phys.Lett., Vol. 76, pp. 1030-1032 (2000).
10. P. C. Chang and A. G. Baca, “InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor”, Appl. Phys. Lett., Vol. 76, pp. 2262-2264 (2000).
11. C. Monier, P. C. Chang, N. Y. Li, J. R. LaRoche, A. G. Baca, H. Q. Hou, F.Ren and S. J. Pearton, “Simulation and design of InGaAsN-based heterojunction bipolar transistors for complementary low-power applications”, Solid state Electro., Vol. 44, pp. 1515-1521 (2000).
12. D. J. Friedman, J. F. Geisz, S. R. Kurtz, J. M. Olson, “1-eV solar cells with GaInNAs active layer”, J. Crystal Growth, Vol. 195, pp. 409-415 (1998)
13. K. Uesugi, N. Morooka and I. Suemune, Appl. Phys. Lett. 74, (1999) 1254
14. D. G. Seiler and C. L. Littler “The Spectroscopy of Semiconductors”, Vol.2, p255.
15. N. Peyghambarian , S. W. Koch and A. Mysyrowicz, Introduction to Semiconductor Optics, (Prentice-Hall, New Jersey ,1993), p. 115
16. Bernard Diu, Franck Laloe, and Claude Cohen-Tannoudji “Quantum Mechanics” ch.13
17. Max and Emil Wolf, Principles of Optics, (Pergamon Press, New York, 1998) p.12
18. John David Jackson, Classical Electrodynamics (third edition),ch7.
19. K. Seeger “For Semiconductor Physics: An Introduction” 5thed, Vol. 40, p341
20. H. Shen and F. H. pollak, phys. Rew. B 42, 7097 (1990)
21. N. Botta, D. K. Gaskill, R. S. Sillmon, R. Henry and R. Glosser, J. Electron. Mater. 17, 161 (1988)
22. K. S. Viswanathan and J. Callaway, Phys. Rev. 143, 564 (1966)
23. A. E. Aspnes and A. A. Studna, phys. Rev. B15, 2127 (1977)
24. R. N. Bhattacharys, H. Shen, P. Parayanthal, F. H. Pollak, T. Coutts and H. Aharoni, phys. Rev. B37, 4044(1988)
25. T. S. Moss, “Handbook on Semiconductors”, North Holland, N. Y. ,Vol. 2. p109(1980)
26. M. Cardona, “Modulation Spectroscopy”, Academic, N. Y.(1969).
27. R. A. Mair, J. Y. Lin, and H. X. Jiang, “Time-resolved photoluminescence studies of InxGa1-xAs1-yNy”, Appl. Phys. Lett., Vol. 76, pp. 188-190 (2000).
28. Masahiko Kondow, Kazuhisa Uomi, Atsuko Niwa, Takeshi Kitatani, Seiji
Watahiki, and Yoshiaki Yazawa, “GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excdllent High-Temperature Performance”, Jpn. J.Appl. Phys., Vol. 35, pp. 1273-1275 (1996).
29. C. Skierbiszewski, P. Perlin, P. Wisniewski, W. Knap, and T. Suski, “Large, nitrogen-induced increase of the electron effective mass
in InyGa1-yNxAs1-x”, Appl. Phys. Lett., Vol. 76, pp. 2409-2411 (2000).
30. Jpn. J. Apple. Phys. Vol.31. L853 1992
31. Materials Science and Engineering B50 (1997) 153-156
32. Physical review B Vol.54 (1996) 17568-17576
33. Jasprit Sinch “physics of Semiconductor and their Heterostuctures” vol. 5 ,p169. P185
34. Temperature-dependent absorption measurements of excitons in GaN epilayers,Appl.phys.Lett.Vol.71 p1981, 1997
35. 陳右諭 ,GaAs/GaAsN量子井的調製光譜研究,國立台灣師範大學物理研
究所碩士論文,2001
36. Physical review B Vol.54 (1996) 17568-17576
37. Direct determination of electron effective mass in GaNAs/GaAs quantum wells,Appl. Phys. Lett. Vol.77 , p1843 (2000)
38. Jpn. J. Apple. Phys. Vol.38(1999),p5003
39. Interband luminescence and absorption of GaNAs/GaAs single-quantum-well structures,Appl.phys.Lett.Vol.76, p2862, 2000
40.“ Band parameters for III–V compound semiconductors and their alloys”, JOURNAL OF APPLIED PHYSICS VOLUME 89,p5815~5875,2001
41. F. H. Pollak and M. Cardona, “piezo-Electroreflectance in Ge, GaAs, and Si”, phys. Rev. 172,816(1968).
42. Jasprit Singh, “Physics of Semiconductors and Their Heterostructures”,chap.7.
43. Gerald Bastard,``Wave Mechanics Applied to Semiconductor Heterostructures'', chap. II.
44. G. Ji, D. Huang, U. K. Reddy, T. S. Henderson, R. Houdre, and H.Morkoc,“Optical investigation of highly strained InGaAs-GaAs multiple quantum wells”, J. Appl. Phys. 62, 3366(1987).
45. Optical and crystallographic properties and impurity incorporation of GaxIn1–xAs (0.44<x<0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition,J. Appl. Phys. 54(8), 4543(1983).
46. Jasprit Singh,``Physics of Semiconductors and Their Heterostructures'',chap. 7.
47. Appl.phys.Lett.Vol.75, p2891~93
48. Solid-State Electronics , 46(2002) , P2147~53
49. B. V. Shanabrook,O. J. Glembocki,D. A. Broido,W. I. Wang,Phys. Rev.B39,3411(1989).
50. Material parameters of In1–xGaxAsyP1–y and related binaries,J. Appl. Phys. 53(12), 8775(1982).
51. Y. S. Huang,H. Qiang,F. H. Pollak,G. D. Pettit,P. D. Kirchner,J. M.
Woodall,H. Strgier,L. B. Sorensen,J. Appl. Phys.70(12),7537(1991).
52. Landolt-Borntein,New Series,Group III , edited by K.H.Hellwege,Vol.179
53. J. Appl. Phys. 58, R1(1985).
54. Barrier thickness dependence of the photoscreening of the piezoelectric field in (111) orientated GaAs–InxGa1 – xAs double quantum wells ,J. Appl. Phys. 84(6), 3349(1998).
55. O. Berolo and J.C.Wooley, in Proceedings of the 11th International Conference on the Physics of Semiconductors , 1420(1972).
56. Mechanisms affecting the photoluminescence spectra of GaInNAs after post-growth annealing,Appl.phys.Lett.Vol.80, p4148~50 (2002).
57. Effect of rapid thermal annealing on GaInNAs/GaAs quantum wells grown by plasma-assisted molecular-beam epitaxy,Appl.phys.Lett.Vol.77, p1280(2000).
58. Origin of improved luminescence efficiency after annealing of Ga(In)NAs materials grown by molecular-beam epitaxy,Appl.phys.Lett.Vol.79, p1094( 2001).
59. Effects of insertion of strain-mediating layers on luminescence properties of 1.3-µm GaInNAs/GaNAs/GaAs quantum-well structures,Appl.phys.Lett.Vol.80, p3054~56(2002).
60. Phys. Rew. B 61 , 7203 (2000)
61. Evidence of strong carrier localization below 100 K in a GaInNAs/GaAs single quantum well , Appl.phys.Lett.Vol.76, p2241~43(2000).
62. Y. Zhang, A. Mascarenhas, H.P. Xin, and C.W. Tu, Phys. Rev. B61, 7479 (2000)
63 N. Shtinkov, P. Desjardins, and R. A. Masut, Phys. Rev. B 67, 081202 (2003)
64 Y. Foulon, C. Priester, G. Allan, J.-C. Garcia, and J.-P. Landesman, J.Vac. Sci. Technol. B 10, 1754 (1992)
65 J. B. Heroux, X. Yang ,and W.I. Wang “Photoreflectance spectroscopy
of strained (In)GaAsN/GaAs multiple quantum wells”J.Appl.Phys,
Vol 92 , 4361