簡易檢索 / 詳目顯示

研究生: 吳政翰
論文名稱: 含氮三五族半導體雷射結構的光學躍遷
Optical Transitions of (III-V-N) Semiconductor Laser structures
指導教授: 陸健榮
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 116
中文關鍵詞: 氮砷化鎵銦量子井光調制反射實驗光激螢光實驗波函數
論文種類: 學術論文
相關次數: 點閱:263下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們分別以光調制反射實驗(PR)和光激螢光實驗(PL)來研究由分子束磊晶法(MBE)所長成的一系列含氮三五族半導體雷射結構樣品,此系列的特徵是都含 。並加以比較有無熱退火處理對實驗譜圖的影響和GaAsN緩衝層對樣品間實驗譜圖的影響。
    樣品由於應力對能帶結構的影響,實驗結果觀察到受應力作用後的躍遷能量,我們並利用MATLAB程式推算出量子井的躍遷能量,計算所得躍遷能量到的也符合調制光譜的實驗結果。接下來我們將所得的能量本徵值帶回原轉換矩陣,可求得樣品的電子能級波函數,並探討波函數和調制光譜實驗譜形的關係。

    We have investigated (III-V-N) semiconductor laser structures grown by Molecular Beam Epitaxy (MBE) using photoreflectance and photoluminescence at various temperatures. The investigated laser structures all contain quantum well, and some of them have buffer layers. We have studied effects of rapid thermal annealing and buffer layer on the optical properties.
    All the principal optical transitions in strained (III-V-N) semiconductor laser structures were analyzed. The matrix transfer algorithm was used to calculate transition energies and electronic wavefunctions of the quantum well. The transitions involving the confined quantum states are compared with observed spectral features. The distribution of the calculated electronic wavefunction may explain the intensity variation of the spectral features.

    目錄 摘要…………………………………………………………………I 目錄…………………………………………………………………II 圖目錄………………………………………………………………IV 第一章 簡介…………………………………………………………1 第二章 光調制與螢光光譜原理 2-1 光調制反射光譜的機制……………………………………4 2-2 電子躍遷理論……………………………………………. 6 2-3 光學函數與電子躍遷的關係………………………………9 2-4 調制光譜的基本原理………………………………………17 2-5 電場調制……………………………………………………23 2-6 弱電場調制…………………………………………………33 2-7 光激螢光的機制……………………………………………35 第三章 實驗與結果 3-1 樣品結構………………………………………………38 3-2 光調制實驗…………………………………………………41 3-3 光激螢光實驗………………………………………………44 3-4 實驗結果和譜形結構………………………………………46 第四章 分析與討論 4-1 樣品材料介紹與分析………………………………………60 4-2 晶格應變對能隙的影響…………………………. ………66 4-3 受應力的樣品量子井能帶結構分析……….. ……………69 4-4 量子井能階躍遷的計算……………………………………75 4-5 樣品波函數的探討…………………………………….....92 4-6 樣品間實驗譜圖的比較………………………………....103 第五章 結論與展望…………………………………………..111 附錄A1:量子井求解束縛態Matlab程式………………………112 參考文獻…………………………………………………………114

    參考文獻
    1. Appl. phys. Lett. Vol. 75 , 4. 26 July 1999
    2. Jpn. J. Appl. Phys. 31 (1992) Pt. 2,No.7A
    3. I.A. Buyanova et al. /Materials Science and Engineering B75 (2000)166-169
    4. Solid State Communications 112 (1999) 443-447
    5. M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, IEEE J. Select. Topics Quantum Electron, 3, 719, (1997).
    6. Z. Pan, T. Miyamoto, D. Schlenker, S. Sato, F. Koyama and K. Iga, J. Appl. Phys. 84, 6409, (1998).
    7. Shunichi Sato, “Low Threshold and High Characteristic Temperatuer 1.3μm Range GaInNAs Lasers Grown by Metalorganic Chemical Vapor Deposition”, Jpn. J. Appl. Phys., Vol. 39, pp. 3403-3405 (2000).
    8. Z. Pan, L. H. Li, Y. W. Lin, B. Q. Sun, and D. S. Jiang, “Conduction band offset and electron effective mass in GaInNAs/GaAs quantum-well structures with low nitrogen concentration”, Appl. Phys. Lett., Vol. 78, pp. 2217-2219 (2001).
    9. M. Hetterich and M. D. Dawson, “Electronic states and band alignment in GaInNAs/GaAs Quantum-well structures with low nitrogen content”, Appl. Phys.Lett., Vol. 76, pp. 1030-1032 (2000).
    10. P. C. Chang and A. G. Baca, “InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor”, Appl. Phys. Lett., Vol. 76, pp. 2262-2264 (2000).
    11. C. Monier, P. C. Chang, N. Y. Li, J. R. LaRoche, A. G. Baca, H. Q. Hou, F.Ren and S. J. Pearton, “Simulation and design of InGaAsN-based heterojunction bipolar transistors for complementary low-power applications”, Solid state Electro., Vol. 44, pp. 1515-1521 (2000).
    12. D. J. Friedman, J. F. Geisz, S. R. Kurtz, J. M. Olson, “1-eV solar cells with GaInNAs active layer”, J. Crystal Growth, Vol. 195, pp. 409-415 (1998)
    13. K. Uesugi, N. Morooka and I. Suemune, Appl. Phys. Lett. 74, (1999) 1254
    14. D. G. Seiler and C. L. Littler “The Spectroscopy of Semiconductors”, Vol.2, p255.
    15. N. Peyghambarian , S. W. Koch and A. Mysyrowicz, Introduction to Semiconductor Optics, (Prentice-Hall, New Jersey ,1993), p. 115
    16. Bernard Diu, Franck Laloe, and Claude Cohen-Tannoudji “Quantum Mechanics” ch.13
    17. Max and Emil Wolf, Principles of Optics, (Pergamon Press, New York, 1998) p.12
    18. John David Jackson, Classical Electrodynamics (third edition),ch7.
    19. K. Seeger “For Semiconductor Physics: An Introduction” 5thed, Vol. 40, p341
    20. H. Shen and F. H. pollak, phys. Rew. B 42, 7097 (1990)
    21. N. Botta, D. K. Gaskill, R. S. Sillmon, R. Henry and R. Glosser, J. Electron. Mater. 17, 161 (1988)
    22. K. S. Viswanathan and J. Callaway, Phys. Rev. 143, 564 (1966)
    23. A. E. Aspnes and A. A. Studna, phys. Rev. B15, 2127 (1977)
    24. R. N. Bhattacharys, H. Shen, P. Parayanthal, F. H. Pollak, T. Coutts and H. Aharoni, phys. Rev. B37, 4044(1988)
    25. T. S. Moss, “Handbook on Semiconductors”, North Holland, N. Y. ,Vol. 2. p109(1980)
    26. M. Cardona, “Modulation Spectroscopy”, Academic, N. Y.(1969).
    27. R. A. Mair, J. Y. Lin, and H. X. Jiang, “Time-resolved photoluminescence studies of InxGa1-xAs1-yNy”, Appl. Phys. Lett., Vol. 76, pp. 188-190 (2000).
    28. Masahiko Kondow, Kazuhisa Uomi, Atsuko Niwa, Takeshi Kitatani, Seiji
    Watahiki, and Yoshiaki Yazawa, “GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excdllent High-Temperature Performance”, Jpn. J.Appl. Phys., Vol. 35, pp. 1273-1275 (1996).
    29. C. Skierbiszewski, P. Perlin, P. Wisniewski, W. Knap, and T. Suski, “Large, nitrogen-induced increase of the electron effective mass
    in InyGa1-yNxAs1-x”, Appl. Phys. Lett., Vol. 76, pp. 2409-2411 (2000).
    30. Jpn. J. Apple. Phys. Vol.31. L853 1992
    31. Materials Science and Engineering B50 (1997) 153-156
    32. Physical review B Vol.54 (1996) 17568-17576
    33. Jasprit Sinch “physics of Semiconductor and their Heterostuctures” vol. 5 ,p169. P185
    34. Temperature-dependent absorption measurements of excitons in GaN epilayers,Appl.phys.Lett.Vol.71 p1981, 1997
    35. 陳右諭 ,GaAs/GaAsN量子井的調製光譜研究,國立台灣師範大學物理研
    究所碩士論文,2001
    36. Physical review B Vol.54 (1996) 17568-17576
    37. Direct determination of electron effective mass in GaNAs/GaAs quantum wells,Appl. Phys. Lett. Vol.77 , p1843 (2000)
    38. Jpn. J. Apple. Phys. Vol.38(1999),p5003
    39. Interband luminescence and absorption of GaNAs/GaAs single-quantum-well structures,Appl.phys.Lett.Vol.76, p2862, 2000
    40.“ Band parameters for III–V compound semiconductors and their alloys”, JOURNAL OF APPLIED PHYSICS VOLUME 89,p5815~5875,2001
    41. F. H. Pollak and M. Cardona, “piezo-Electroreflectance in Ge, GaAs, and Si”, phys. Rev. 172,816(1968).
    42. Jasprit Singh, “Physics of Semiconductors and Their Heterostructures”,chap.7.
    43. Gerald Bastard,``Wave Mechanics Applied to Semiconductor Heterostructures'', chap. II.
    44. G. Ji, D. Huang, U. K. Reddy, T. S. Henderson, R. Houdre, and H.Morkoc,“Optical investigation of highly strained InGaAs-GaAs multiple quantum wells”, J. Appl. Phys. 62, 3366(1987).
    45. Optical and crystallographic properties and impurity incorporation of GaxIn1–xAs (0.44<x<0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition,J. Appl. Phys. 54(8), 4543(1983).
    46. Jasprit Singh,``Physics of Semiconductors and Their Heterostructures'',chap. 7.
    47. Appl.phys.Lett.Vol.75, p2891~93
    48. Solid-State Electronics , 46(2002) , P2147~53
    49. B. V. Shanabrook,O. J. Glembocki,D. A. Broido,W. I. Wang,Phys. Rev.B39,3411(1989).
    50. Material parameters of In1–xGaxAsyP1–y and related binaries,J. Appl. Phys. 53(12), 8775(1982).
    51. Y. S. Huang,H. Qiang,F. H. Pollak,G. D. Pettit,P. D. Kirchner,J. M.
    Woodall,H. Strgier,L. B. Sorensen,J. Appl. Phys.70(12),7537(1991).
    52. Landolt-Borntein,New Series,Group III , edited by K.H.Hellwege,Vol.179
    53. J. Appl. Phys. 58, R1(1985).
    54. Barrier thickness dependence of the photoscreening of the piezoelectric field in (111) orientated GaAs–InxGa1 – xAs double quantum wells ,J. Appl. Phys. 84(6), 3349(1998).
    55. O. Berolo and J.C.Wooley, in Proceedings of the 11th International Conference on the Physics of Semiconductors , 1420(1972).
    56. Mechanisms affecting the photoluminescence spectra of GaInNAs after post-growth annealing,Appl.phys.Lett.Vol.80, p4148~50 (2002).
    57. Effect of rapid thermal annealing on GaInNAs/GaAs quantum wells grown by plasma-assisted molecular-beam epitaxy,Appl.phys.Lett.Vol.77, p1280(2000).
    58. Origin of improved luminescence efficiency after annealing of Ga(In)NAs materials grown by molecular-beam epitaxy,Appl.phys.Lett.Vol.79, p1094( 2001).
    59. Effects of insertion of strain-mediating layers on luminescence properties of 1.3-&micro;m GaInNAs/GaNAs/GaAs quantum-well structures,Appl.phys.Lett.Vol.80, p3054~56(2002).
    60. Phys. Rew. B 61 , 7203 (2000)
    61. Evidence of strong carrier localization below 100 K in a GaInNAs/GaAs single quantum well , Appl.phys.Lett.Vol.76, p2241~43(2000).
    62. Y. Zhang, A. Mascarenhas, H.P. Xin, and C.W. Tu, Phys. Rev. B61, 7479 (2000)
    63 N. Shtinkov, P. Desjardins, and R. A. Masut, Phys. Rev. B 67, 081202 (2003)
    64 Y. Foulon, C. Priester, G. Allan, J.-C. Garcia, and J.-P. Landesman, J.Vac. Sci. Technol. B 10, 1754 (1992)
    65 J. B. Heroux, X. Yang ,and W.I. Wang “Photoreflectance spectroscopy
    of strained (In)GaAsN/GaAs multiple quantum wells”J.Appl.Phys,
    Vol 92 , 4361

    QR CODE