簡易檢索 / 詳目顯示

研究生: 樂杰
Lo, Chieh
論文名稱: 利用 I-line 微影及相關製程技術開發奈米級 Ω 型金氧半場效電晶體和無接面式電晶體
Development of Nano-Scale Ω-Shape MOSFETs and JLFETs by I-line Lithography and Relation Process
指導教授: 李敏鴻
Lee, Min-Hung
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 67
中文關鍵詞: 奈米線金氧半場效電晶體無接面電晶體多層堆疊
英文關鍵詞: Nano Fin, MOSFET, JLFET, Stacked
DOI URL: http://doi.org/10.6345/NTNU201900912
論文種類: 學術論文
相關次數: 點閱:155下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

元件尺寸微縮在相同的面積下有著更高的效能,因此元件大小成 為現今科技業一直持續努力的目標,然而隨著元件尺寸持續的微縮, 短通道效應也隨著元件的微縮到來,當通道到達了數十奈米甚至是奈 米量級的時候,嚴重的短通道效應將會帶來許多問題,因此能夠有效 控制閘極能力至關重要,目前發展出許多方法來改善短通道效應,通 道使用奈米線並配合三維結構如鰭式電晶體、Ω 形電晶體,藉由增加 閘極的控制面積,來有效抑制漏電流,而這類型的電晶體也是在物聯 網時代低耗能的候選者。
本論文主要探討的是透過台灣半導體實驗室(TSRI) 0.35μm 製程 的設備,製作 Ω 型金氧半場效電晶體(Ω-Shape MOSFETs)和 Ω 型 無接面式電晶體(Ω-Shape JLFETs),藉由在矽基板上堆疊二氧化矽 和多晶矽來取代 SOI,盡可能降低成本並配合 365 奈米 I-Line 光學 步進機快速生產元件,配合各種方式來微縮元件尺寸,藉此開發具有 奈米級線寬的電晶體。

In order to improve CMOS device performance, we expect place more transistors on a single chip, so the shrinking of transistors is necessary. However, the short channel effects (SCE) are followed with transistors scaling down to nano-scaled. The 3D transistors such as FinFETs Ω-FET or nanowire have superior gate controllability to suppress SCE which are candidates for low-power application in the IoT (internet of things) era.
In this work, we fabricate Ω-Shape enhancement mode FET (Ω-Shape FET) and Ω-Shape Junctionless FET (Ω-Shape JLFET) by Taiwan Semiconductor Research Institute (TSRI) 0.35μm process line. Stacking SiO2 and Poly-Si on the Si substrate to replace SOI wafer has an advantage of cost reduction. On the other hand, 365nm I-Line stepper could meet the requirement of rapid production. Therefore, we can develop any different size nano-scaled 3D transistor.

Publications I 中文摘要 IV Abstract V 致謝 VI 目錄 VII 圖目錄 X 第一章 介紹與文獻探討 1-1 多閘極(Multigate)電晶體介紹與文獻探討 1 1-2 環繞式閘極電晶體介紹與文獻探討 4 1-3 無接面(Junctionless)電晶體介紹與文獻探討 7 第二章 負電容多層堆疊奈米級 Ω 型金氧半場效電晶體 2-1 實驗動機 11 2-2 負電容多層堆疊奈米級 Ω 型金氧半場效電晶體製作流程 13 2-2-1 晶圓清洗和沉積多層矽 13 2-2-2 堆疊矽之黃光製程 16 2-2-3 Trimming 與多層堆疊乾式蝕刻 19 2-2-4 去除上層二氧化矽與沉積 High-K 介電層 23 2-2-5 金屬層沉積與定義閘極 24 2-2-6 Contact Hole 製程 28 2-3 多層堆疊Ω型金氧半場效電晶體結構與電性分析 32 2-3-1 結構分析 32 2-3-2 電性分析 37 2-4 結論 41 第三章 奈米級 Ω 型無接面式電晶體 3-1 實驗動機 42 3-2 奈米級Ω型無接面式電晶體製作流程 43 3-2-1 晶圓清洗與通道準備 43 3-2-2 S/D 和通道的黃光製程與乾式蝕刻 45 3-2-3 上層二氧化矽去除與熱氧化消耗線寬 47 3-2-4 沉積 High-K 介電層與閘極金屬 49 3-2-5 定義閘極與金屬層蝕刻 50 3-3 奈米級Ω型無接面式電晶體結構與電性分析 53 3-3-1 結構分析 53 3-3-2 電性分析 58 3-4 結論 60 第四章 結論與未來工作 4-1 結論 61 4-2 未來工作 64 參考文獻 65

[1] D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, T.-J. King, J. Bokor, and C. Hu, “FinFET—A self-aligned double-gate MOSFET scalable beyond 20 nm, ” IEEE Trans. on Electron Device, vol. 47, no.12, pp. 2320-2325, 2000.
[2] K. S. Li, P. G. Chen, T. Y. Lai, C. H. Lin, C. C. Cheng, C. C. Chen, Y. J. Wei, Y. F. Hou, M. H. Liao, M. H. Lee, M. C. Chen, J. M. Sheih, W. K. Yeh, F. L. Yang, “Sub- 60mV-Swing Negative-Capacitance FinFET without Hysteresis, ” in IEDM Tech. Dig., 2015, pp. 620-623.
[3] N. Loubet, T. Hook, P. Montanini, C. W. Yeung, S. Kanakasabapathy, M. Guillorn, T. Yamashita, J. Zhang, X. Miao, J. Wang, A. Young, R. Chao, M. Kang, Z. Liu, S. Fan, B. Hamieh, S. Sieg, Y. Mignot, W. Xu, S. C. Seo, J. Yoo, S. Mochizuki, M. Sankarapandian, O. Kwon, A. Carr, A. Greene, Y. Park, J. Frougier, R. Galatage, R. Bao, J. Shearer, R. Conti, H. Song, D. Lee, D. Kong, Y. Xu, A. Arceo, Z. Bi, P. Xu, R. Muthinti, J. Li, R. Wong, D. Brown, P. Oldiges, R. Robison, J. Arnold, N. Felix, S. Skordas, J. Gaudiello, T. Standaert, H. Jagannathan, D. Corliss, M.-H. Na, A. Knorr, T. Wu, D. Gupta, S. Lian, R. Divakaruni, T. Gow, C. Labelle, S. Lee, V. Paruchuri, H. Bu, and M. Khare, “Stacked Nanosheet Gate-All-Around Transistor to Enable Scaling Beyond FinFET, ” in VLSI Technology Symp., 2012, pp. 230-231.
[4] R. Loo, A. Y. Hikavyy, L. Witters, A. Schulze, H. Arimura, D. Cott, J. Mitard, C. Porret, H. Mertens, P. Ryan, J. Wall, K. Matney, M. Wormington, P. Favia, O. Richard, H. Bender, A. Thean, N. Horiguchi, D. Mocuta and N. Collaert, “Processing Technologies for Advanced Ge Devices, ” ECS J. Solid State Sci. Technol., vol. 6, no. 1, pp. 14-20, 2017.
[5] C. W. Lee, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, and J. P. Colinge, “Performance estimation of junctionless multigate transistors, ” Solid State Electron, vol. 54, no. 2, pp. 97-103, 2010.
[6] 宋柏融“無接面電晶體平台選擇,SOI 或 bulk Si ? ” 國家奈米元件實驗室,奈 米通訊, 24 卷, No.2, pp. 27-28。
[7] 林政頤、蘇俊榮、黃調元、林鴻志 “多晶矽無接面電晶體技術” 國家奈米元 件實驗室, 奈米通訊-主題文章 ,vol. 4, 21 卷, No.1, pp. 20-16。
[8] 古翔升, “鐵電負電容效應之奈米片環繞式電晶體” 碩士論文, 國立臺灣師範 大學, 107 年。
[9] http://technews.tw/2019/05/15/samsung-2021-3nm-gaa/
[10] 陳羿帆, “多層堆疊混合式奈米薄片無接面式場效電晶體研究” 碩士論文,
國立清華大學, 107 年。
[11] 郭峻岳, “利用 365nm 黃光微影製程之奈米微結構” 碩士論文, 國立臺灣師
範大學, 106 年。
[12] M. H. Lee, K. T. Chen, C. Y. Liao, S. S. Gu, G. Y. Siang, Y. C. Chou, H. Y. Chen,
J. Le, R. C. Hong, Z. Y. Wang, S. Y. Chen, P. G. Chen, M. Tang, Y. D. Lin, H. Y. Lee, K. S. Li, and C. W. Liu, “Extremely Steep Switch of Negative-Capacitance Nanosheet GAA-FETs and FinFETs, ” Technical Digest, in IEDM Tech., 2018, pp. 735-738.
[13] P. J. Sung, T. C. Cho, F. J. Hou, F. K. Hsueh, S. T. Chung, Y. J. Lee, M. I. Current, and T. S. Chao, “High-Performance Uniaxial Tensile Strained n-Channel JL SOI FETs and Triangular JL Bulk FinFETs for Nanoscaled Applications, ” IEEE Trans. Electron Devices, vol. 64, pp. 2054-2060, 2017.
[14] C. J. Su, T. I. Tsai, Y. L. Liou, Z. M. Lin, H. C. Lin, and T. S. Chao “Gate-All- Around Junctionless Transistors With Heavily Doped Polysilicon Nanowire Channels, ” IEEE Electron Device Letter, vol. 32, no. 4, pp. 521-523, 2011.

無法下載圖示 本全文未授權公開
QR CODE