研究生: |
吳文耀 |
---|---|
論文名稱: |
季節可預報度的特性 |
指導教授: | 陳正達 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 可預報度 |
論文種類: | 學術論文 |
相關次數: | 點閱:72 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究模式在月或季節尺度的大氣可預報度時,大氣平均狀態可分為自然變化分量和邊界力分量,自然變化分量是因為大氣內部動力過程所產生,為內部的變化;邊界力分量是外部對大氣所作用,視為外部給予大氣的訊號,而內部的變化是隨機產生無法預測的雜訊,以這二者的變化去評估模式潛在的可預報度。
變異量分析的方法,將因為海表面溫度改變而產生的變異量佔總變異量的比例定義為潛在的可預報度,描繪出季節平均的可預報度分布。熱帶地區受海表面溫度影響較大,存在較高的可預報度,熱帶外地區的大氣主要受到內部動力過程主控,大多為混亂的訊號,可預報度較低。使用距平型態的相關係數方法,分別對El Nino、La Nina、平均年及其他年等,計算平均海平面氣壓場在亞洲地區(0~45N;90~150E)、降水場在東亞地區(20~45N;90~150E)及Z500(500-mb height)高度場在PNA(Pacific-North American)地區(20~70N;180~60W)的可預報度在ENSO及非ENSO年的季節性變化,藉以了解ENSO事件對可預報度的影響。
本研究主要是使用下列四個模式:ECHAM4氣候模式、CWB模式、GFDL新一代大氣海洋耦合模式及NCEP模式,模式模擬的時間都取1955年12月至2000年2月,每個系集模式都有10個個別模擬,針對降水場、海平面氣壓場及z500進行分析、探討可預報度的特性。分析結果顯示,海平面氣壓場和降水場的可預報度主要是集中在熱帶太平洋,降水場甚至更集中在赤道附近,Z500高度場則呈帶狀分佈環繞整個熱帶地區,不論哪一個變數,一般而言,模式在El Nino的可預報度比La Nina年要高,這兩者的可預報度又比非ENSO年的可預報度要高很多;可預報度的值在El Nino年的1-3月達到最高,La Nina年的可預報度比平均年要高,但是在春天時會快速的下降到和平均年差不多,稱之為春天預報障礙(Spring barrier),主要是這時候的雜訊突然增大的結果。
另外以GFDL模式在不同實驗設計下的結果來探討,在模式裡中考慮海氣交互作用和未考慮海氣交互作用的差異,實驗設計分別有MLM模擬和CTRL模擬,這兩個模擬在東赤道太平洋(15°S-15°N,172°E-South American coast)區域內都使用觀測的海溫資料,也就是說這兩個模擬同時受到ENSO事件的影響,區域外在MLM模擬則使用一個簡單的海洋混合層模式所模擬的海溫資料,而CTRL模擬所使用的SST是從MLM模擬結果長期平均,並不包含年際變化部分,以研究海氣交互作用對氣
胡志文,馮欽賜,汪鳳如,陳建河,鄭明典,2002 :中央氣象局全球模式之氣候特徵:東亞夏季季風。大氣科學,30,99-116。
鐘珮瑄, 2002: 歐洲長期預報中心季節系集模擬中所呈現的季風可預報度,國立臺灣師範大學地球科學研究所碩士論文,未出版,台北市。
吳俊憲, 2004: ECHAM4模式季節預報度之分析,國立臺灣師範大學地球科學研究所碩士論文,未出版,台北市。
Aceituno, P., 1988: On the functioning of the Southern Oscillation in the South American sector. Part I: Surface climate. Mon. Wea. Rev., 116, 505-524.
Alexander, M. A., 1990: Simulation of the response of the North Pacific Ocean to the anomalous atmospheric circulation associated with El Nino. Climate Dyn., 5, 53-65
-,1992a: Midlatitude atmosphere-ocean interaction during El Nino. Part I: The North Pacific Ocean. J. Climate, 5, 944-958.
-, 1992b: Midlatitude atmosphere-ocean interaction during El Nino. Part II: The Northern Hemisphere atmosphere. J. Climate, 5, 959-972.
-, and Scott J. D., 1995: Atlas of climatology and variability in the GFDL R30S14 GCM. CIRES, University of Colorado, 121 pp. 〔Available from the authors at NOAA- CIRES climate Diagnostics Center, R/CDCI, 325 Broadway, Boulder, CO 80305-3328.〕
-, and -, 1997: Surface flux variability over the North Pacific and North Atlantic Oceans. J. Climate., 10, 2963–2978.
-, Blade I., Newman M., Lanzante J. R., and Lau N.-C., 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate., 15, 2205–2231.
Arakawa, A., and W. H. Schubert, 1974:Interaction of a cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 674-701
-, and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics, J. Chang, Ed., Vol. 17, Academic Press, 173–265.
-, and M. Suarez, 1983:Vertical differencing of the primitive equation in sigma coordinates. Mon. Wea. Rev., 111, 34-45.
Barnett, T. P., 1995: Monte Carlo climate forecasting. J. Climate, 8, 1005-1022.
Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency atmospheric circulation pattern. Mon. Wea. Rev., 115, 1083-1126.
Barsugli, J. J., 1995: Idealized Models of intrinsic midlatitude atmosphere-ocean interaction. Ph.D. dissertation, University of Washington, 187 pp.〔Available from Dept. of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640; or on line at http://www.cdc.noaa.gov/~jjb/thesis.html.〕
Blackmon, m. L., J. E. Geisler, and E. J. Pitcher, 1983: A general circulation model study of January climate anomaly patterns associated with interannual variation of equatorial Pacific sea surface temperatures. J. Atmos. Sci., 40, 1410-1425.
Blade, I., 1997: The influence of midlatitude ocean-atmosphere coupling on the low-frequency variability of a GCM. Part I: No tropical SST forcing. J. Climate, 10, 2087-2106.
Broccoli, A. J., and S. Manabe, 1992: The effects of orography on midlatitude Northern Hemisphere dry climates. J. Climate, 5,1181-1201.
Cane, M. A., 1991:Forecasting El Nino with a geographical model. Teleconnections Connecting World-Wide Climate Anomalies, M. Glantz, R. Katz, and N. Nicholls, Eds., Cambridge University Press, 345-369.
Charney, J.G., and Shukla,J., 1981:Predictability of Monsoons.,Monsoon Dynamics,J.Lighthill and R.Pearce,Eds.,Cambridge University Press,735pp.
Chen, W. Y., 1989:Estimate of Dynamical Predictability from NMC DERF Experiment. Mon. Wea. Rev., 117, 1227–1236.
-, and Van DEN Dool, H.M., 1995: Low-frequency variabilities for widely different basic flows , Tellus, 47A,526-540
-, and Van DEN Dool, H.M., 1997: Atmospheric predictability of Seasonal, Annual, and Decadal climate mean and the role of the ENSO cycle: A model study, J.Climate, 10, 1236-1254.
Chervin, R. M., 1986 Interannual variability and seasonal climate predictability. J. Atmos. Sci., 42, 1037-1049.
Chou, M. D. and Suarez, M. J., 1994: An efficient thermal infrared radiation parameterization for use in general circulation model, NASA Tech. Memo. 104606【NTIS N95-15745.】,85pp.
-, Lee, K. T., Tsay, S. C., and Fu, Q., 1999: Parameterization for cloud longwave scattering for use in atmospheric model. J. Climate, 12, 159-169.
Collins, J. A., J. D. Scott, C. A. Smith, and M. A. Alexander, 2001: The GFDL
Electronic Climate Atlas.〔Available online at http://www.cdc.noaa.gov/gfdl.〕
Compo, G.P., Sardeshmukh, P.D., and Pendland, C., 2001:Change of subseasonal variability with El Nino, J.Climate, 14, 3356-3374.
Cubash, U., 1985: The mean response of the ECMWF global model to the composite El Nino anomaly in the extended range prediction experiments. Coupled Ocean-Atmosphere Models, J. Nihoul, Ed., Elsevier Press, 329-344.
Dalcher, A., and E. Kalnay, 1987: Error growth and predictability in operational ECMWF forecast. Tellus, 39A, 474-491.
Dix, M. R., and B. G. Hunt, 1995: Chaotic influences and the problem of deterministic seasonal predictions. Int. J. Climatol., 15, 729-752.
Fels, S. B. and Schwarzkopf, M. D., 1975: The simplified exchange approximation: A new method for radiative transfer calculation, J. Atmos. Sci., 32, 1475-1488.
Folland, C. K., and D. P. Rowell, 1995: Workshop on Simulation of the Climate of the Twentieth Century Using GISST. Climate Research Tech. Rep. 56, 111pp.
Gates,W.L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bulletin of the American Meteorological Society: Vol. 73, No. 12, pp. 1962–1970.
-, J. Boyle, C. Covey, C. Dease, C. Doutriaux, R. Drach, M. Fiorino, P. Gleckler, J. Hnilo, S. Marlais, T. Phillips, G. Potter, B. Santer, K. Sperber, K. Taylor and D. Williams, 1998: An Overview of the Results of the Atmospheric Model Intercomparison Project (AMIP I ), Bulletin of the American Meterological Society, 73, 1962-1970.
Gordon, H. B., and Stern W., 1982: A description of the GFDL global spectral model. Mon. Wea. Rev., 110, 625–644.
Harshvardhan, R. Davies, D. Randall, and T. Corestti, 1987:A fast radiation parameterization for atmospheric circulation models. J. Geophys. Res., 92, 1009-1016.
Harzallah, A., and R. Sadourny, 1995: Internal versus SST-forced atmospheric variability as simulated by an atmospheric general circulation model. J. Climate, 8, 474-495.
Hastenrath, S., 1990:Predictability of anomalous river discharge in Guyana. Nature, 345, 53-54.
Held, I. M., and M. Ting, 1990: Orographic versus thermal forcing of stationary waves: The importance of the mean low-level wind. J. Atmos. Sci., 47, 495-500.
Horel, J. D., and J. M. Wallace, 1981: Planetary scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813-829.
Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 159-163.
Hoerling, M.P, Kumar, A., and Xu, T., 2001: Robustness of the nonlinear climate response to ENSO’s extreme phase, J.Climate, 14,1277-1293.
Hsiung, J., and R. E. Newell, 1983: The principal nonseasonal modes of variation of global sea surface temperature. J. Climate, 14, 1029-1042.
Jones, R. H/, 1975: Estimating the variance of time averages. J. Appl. Meteor., 14, 159-163.
Kalany, E., Kanamitsu, M., and Baker, W. E., 1990: Global Numerical Weather Prediction At the National-Meteorological-Center, Bull, Amer. Meteorol. Soc., 71, 1410-1428.
-, Kistler, R., Collins. W. et al., 1996: The NCEP/NCAR 40-Year Reanalysis Project, Bull. Amer. Meteorol. Soc., 77, 437-471.
Kanbmitsu, M., 1989: Description of the NMC global data assimilation and forecast system. Weather and Forecasting, 4, 335-342.
-, Mo, K. C. and Kalnay, E., 1990: Annual Cycle Integration of the NMC Medium-Range Forecasting (MRF) Model, Mon. Weather Rev., 118, 2543-2567.
Kanbmitsu, M., Alpert, J. C., Campana, K. A., et al.,1991: Recent changes implemented into the global forecast system at NMC, Weather and Forecasting, 6, 425-435.
-, Ebisuzaki, W., Woolen, J., Potter, J., and Fiorino, M., 1999: An overview of NCEP/DOE reanalysis-2, 2nd international conference on reanalysis, Wokefield Park, United Kingdom.
Kanbmitsu, M., Kumar, A., Schemm, J., et al., 2002: NCEP dynamical seasonal forecast system 2000, Bull. Amer. Meteorol. Soc., (submitted).
Kobayashi, M., Takano, K., Kusunoki, S., Sugi, M. and Kitoh, A., 2000:Seasonal predictability in winter over eastern Asia using the JMA global model , Quart.J.Roy.meteor.Soc, 126,2111-2124.
Kumar, A. and Holerling, M, P. 1995: Prospect and limitations of seasonal atmospheric GCM predictions. Bull. Amer. Meteor. Soc., 76, 335-345.
-, M. Holerling, M, Ji, A. Leetmaa, and P. Sardeshmukh, 1996: Assessing a GCM’s suitability for making seasonal predictions. J. Climate, 9, 115-129
-, and Holerling, M, P. 1998:Annual cycle of Pacific-North American seasonal predictability associate with different phases of ENSO,J.Climate,11,
3295-3308.
Latif, M., and N. E. Graham, 1991: How much predictive skill is contained in the thermal structure of an OGCM? TOGA Notes, 2, 6-8.
Lau, N. C., 1981: A diagnostic study of recurrent meteorological anomalies appearing in a 15-year simulation with a GFDL general circulation model. Mon. Wea. Rev., 109, 2287–2311.
-, and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9, 2036-2057.
-, and -, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate., 13, 4287–4309.
-, and -, 2001: Impact ENSO on SST Variability in the North Pacific and North Atlantic: Seasonal Dependence and Role of Extratropical Sea-Air Coupling, J. Climate. 14, 2846-2866.
Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Professional Paper 13, 173pp. 【Available from Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402.】
Lieth, C. E., 1973: The standard error of time-average estimates of climatic mean. J. Appl. Meteor., 12, 1066-1069.
Liou, Chi-Sann, Jen-Her Chen, Chuen-teyr Terng, Feng-Ju wang, Chin-Tzu Fong, Thomas E. Rosmond, Hong-Chi Kuo, Chin-Hui Shiao, and Ming-Dean, 1997:The second-generation global forecast system at the central weather bureau in Taiwan. Weather and Forecasting, 3, 653-663
Lorenz, E. N., 1965:Atmospheric Predictability Experiments with a large numerical Model, Tellus.,34,505-513.
Luksch, U., and H. von Storch, 1992: Modeling the low-frequency sea surface temperature variability in the North Pacific. J. Climate, 5, 893-906.
Madden, R. A., 1976: Estimates of the natural variability of time-average sea-level pressure. Mon. Wea. Rev., 104, 942-952.
Manabe, S., and Hahn D. G., 1981: Simulation of atmospheric variability. Mon. Wea. Rev., 109, 2260–2286.
-, R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991: Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4, 785-818.
Mansfield, D. A., 1986: The Skill of Dynamical Long-range Forecasts, including the Effect of Sea Surface Temperature Anomalies. Quart. J. Roy. Meteor. Soc., 112, 1145-1176
Milly, P. C. D., and A. B. Shmakin, 2002: Global modeling of land water and energy balances. Part I: The land dynamics (LaD) model. J. Hydrometeor., 3, 283–299.
Miyakoda, K., J. Siruts, and J. Ploshay, 1986:One-month Forecast Experiment-Without Anomaly Boundary Forcing. Mon. Wea. Rev., 114, 2363-2401.
Moothi, S., and M. J. Suarez, 1992:Relaxed Arakawa-Schubert: A parameterization of moist convection for general circulation model. Mon. Wea. Rev., 120, 978-1002
NMC-Development-Division, 1988: Documentation of the research version of the NMC medium range forecasting model, 504 pp.
Orzag, S. A., 1970:Transform method for the calculation of vector-couple sums: Application to the spectral form of the vorticity equation. J. Atmos. Sci., 27, 890-895
Plamer, T.N. and S. Tibaldi, 1988:On the Prediction of Forecast Skill. Mon. Wea. Rev., 116, 2453–2480.
-, and Anderson, D.L.tT., 1994:The prospects for seasonal forecasting-A review paper, Quar t .J .Roy. meteor. Soc, 120,755-793.
Road, J. O.,1986: Forecasts of Time Averages with a Numerical Weather Prediction Model. J.Atmos Sci.,43, 871-892.
-,1987: Predictability in the extended range. J. Atmos. Sci., 44, 3405-3526.
-, and S-C, Chen, 2001: Surface Water and Energy Budgets for the Mississippi Catchment Area from Global Reanalysis and Regional Climate Model. Physics and Chemistry of the Earth. EGS, Vol. 26, No. 5-6 pp. 369-375.
Roeckner, E., K. Arpe, L. Bengtsson, M. Christoph, M. Claussen, L. Duemenil, M. Esch, M. Giorgetta, U. Schlese, and U. Schulzweida, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Reports of the Max-Planck-Institute, Hamburg, No. 218, 90 pp.
Rowell, D.P., C. K. Folland, K. Maskell, and M. Neil Ward, 1995: Variability of Summer Rainfall over Tropical North Africa (1906-92) Observation and Modelling. Quart. J .Roy. meteor .Soc, 121,669-704.
Rowell, D.P., 1998: Assessing potential seasonal Predictrability with an ensemble of multidecadal GCM simulations, J.Climate, 11,109-120.
Scheffe, H., 1959: The analysis of variance. John Wiley and Sons, New York, 477pp.
Searle, S. R., G. Casella, and C. E. Mcculloch, 1992: Variance Components. John Wiley and Sons, New York, 501pp.
Shukla, J., 1981: Dynamical Predictability of Monthly Means. J.Atmos Sci.,38, 2547-2572.
-,Anderson,J.,Baumhefner,D.,Brankovic,C.,Chang,Y.,Kalany,E.,Marx,L.,Palmer,T.,Paolino,D.,Ploshay,J.,Schubert,S.,straus,D.,Suarez,M., and Tribbia,J.,2000:Dynamical Seasonal Prediction,Bull.Amer.Metror.Soc.,81,
2593-2606
Schubert, S. D., and M. Suarez, 1989: Dynamical predictability in a simple general circulation model: Average error growth. J. Atmos. Sci., 46, 353-370.
Schubert,S.,Suarez,M.,Chang ,Y., and Branstator,G.,2001:The impact of ENSO on extratropical low-frequwncy noise in seasonal forecasts,J.Climate,14,
2351-2365.
Schubert,S.,Suarez,M.,Pegion,P.,Kistler,M.A., and Kumar,A.,2002: Predictability of zonal means during boreal summer,J.Climate,15,420-434.
Slingo, A. and Slingo, J. M., 1991: Response of the National Center For Atmospheric Research Community Climate Model to Improvements in the Representation of Clouds, J. Geophy. Res-Atmos., 96, 15341-15357.
Stern, W., and K. Miyakoda, 1995: The feasibility of seasonal forecasts speculated from multiple GCM simulations. J. Climate, 8, 1071-1085.
Straus, D., Shukla, J., Paolino, D., Schubert, S. Suarez, M., Pegion, P., and Kumar, A., J.Climate ,2003: Predictability of seasonal mean atmospheric circulation during autumn ,winter, and spring ,J.Climate,16,3629-3649.
Sud, Y. C., and W. K.-M. Lau,1996: Comments on ‘Variability of summer rainfall over tropical North Africa(1906-92): Observation and modeling’ Quart. J. Roy Meteor. Soc., 122, 1001-1006.
The GFDL Global Atmospheric Model Development Team:. 2004:Journal of Climate: Vol. 17, No. 24, pp. 4641–4673.
Tracton, M. S., K. Mo, W. chen, E. Kalnay, R. Kistler, and G. white, 1989: Dynamical extended range forecasting (DERF) at the National Meteorological Center. Mon. Wea. Rev., 117, 1604-1635.
Trenberth, K. E., 1984: Some effects of finite sample size and persistence on meteorological statistics. Part II: Potential predictability. Mon. Wea. Rev., 112, 2369-2379.
Van Den Dool, H. M., 1994:Long Range weather Forecasts through Numerical and Empirical Methods. Dyn.Atmos.Ocean.,20,247-812.
Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784-812.
-, and M. L. Blackmon, 1983: Observation of low-frequency atmospheric variability. Large-scale Dynamical Process in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds., Academic Press,55-94.
Wang, B., Wu, R., and Fu, X., 2000:Pacific-East Asian Teleconnection: How Does ENSO Affect East Asia Climate?,J .Climate, 13,1517-1536.
Ward, M. N., and C. K. Folland, 1991: Prediction of seasonal rainfall in the North Nordeste of Brazil using eigenvectors of sea surface temperatures. Int. J. Climatol., 11, 711-743.
Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems . Quart. J. Roy. Meteor. Soc., 118, 877-926.
Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.
Wu, R., Hu, Z.-Z., Kirtman, B.P., 2003: Evolution of ENSO-relation rainfall anomalies in East Asia ,J.Climate,16,3742-3758.
Yang, X. Q., J. F. Anderson, and W. F. Stern, 1998: Reproducible Forced Modes in AGCM Ensemble Integration and Potential Predictability of Atmospheric Seasonal Variations in the Extratropics. J. Climate, 11,2492-2959.
Zwier, F. W. 1987: A potential predictability study conducted with an atmospheric general circulation model. Mon. Wea. Rev., 115, 2957-2974.