簡易檢索 / 詳目顯示

研究生: 阮楷博
Juan, Kai-Bo
論文名稱: 基於教與學最佳化演算法之模糊MIT-規則控制應用於Zeta直流-直流轉換器
Application of Fuzzy MIT-Rule Control Based on Teaching-Learning-Based Optimization Algorithm in Zeta DC-DC Converter
指導教授: 陳瑄易
Chen, Syuan-Yi
口試委員: 陳瑄易
Chen, Syuan-Yi
陳正一
Chen, Cheng-I
劉祐任
LIU, YU-JEN
口試日期: 2024/11/08
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 102
中文關鍵詞: 教與學演算法模糊邏輯負載變化MIT規則電壓控制Zeta直流-直流轉換器
英文關鍵詞: Teaching-Learning-Based Algorithm, Fuzzy Logic, Load Variation, MIT Rules, Voltage Control, Zeta Converter
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202500093
論文種類: 學術論文
相關次數: 點閱:31下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對Zeta直流-直流轉換器平台提出了一種最佳化模糊MIT規則的自適應控制策略,用於在負載變動下控制DC-DC Zeta直流-直流轉換器的輸出電壓。本論文首先說明了Zeta直流-直流轉換器的系統特性與操作原理,接著根據Zeta直流-直流轉換器充放電特性推導出系統動態模型,並依據本文所需之輸出規格設計了系統所需元件值,藉由電壓的回授訊號與理想的參考值比較,並透過控制器使得系統輸出更加精確及快速。接著,利用模糊理論設計一個模糊MIT規則(FMIT)控制器,透過動態調整學習率來提升系統動態響應,之後比較MIT規則控制器以及FMIT規則控制器,並經由MATLAB SIMULINK軟體模擬以驗證FMIT規則控制器之優越性。而為了進一步改善轉換器輸出在負載變動下之強健性,本論文設計一個基於教與學最佳化模糊歸屬函數之適應性MIT規則控制器(TFMIT),使得控制器能夠在輸入誤差及其變化量的變動下以調整模糊歸屬函數之區間,使模糊系統在不同誤差下能反應出更精準之歸屬度。最後經由推論引擎計算和解模糊化,得到MIT規則控制器之學習率變化量,其變化量將進一步提高系統之響應速度及強健性,使其具有更快的收斂時間。本論文透過數位訊號處理器(TMS320F28335)實現上述控制策略,並以上升時間和安定時間作為性能比較之指標以驗證上述三種控制策略。透過實驗結果驗證,相比傳統MIT規則控制器之性能,本論文所提出之控制器有顯著的改善效益,並使系統在負載變動下仍能保持其穩定性。

    This paper proposes an optimized fuzzy MIT rule-based adaptive control strategy for the Zeta DC-DC converter platform to regulate its output voltage under load variations. First, the paper explains the system characteristics and operating principles of the Zeta DC-DC converter. Based on the charging and discharging characteristics of the Zeta converter, a dynamic model of the system is derived. The necessary component values are designed according to the required output specifications. By comparing the feedback voltage signal with the ideal reference value, the controller ensures the system output is more accurate and faster.
    Next, a fuzzy MIT rule (FMIT) controller is designed using fuzzy theory to dynamically adjust the learning rate, thereby improving the system's dynamic response. The performances of the MIT rule controller and the FMIT controller are compared, and MATLAB SIMULINK simulations are used to verify the superiority of the FMIT controller. To further enhance the converter's robustness under load variations, an adaptive MIT rule controller based on teaching-learning optimization of fuzzy membership functions (TFMIT) is developed. This controller adjusts the intervals of the fuzzy membership functions based on input errors and their changes, enabling the fuzzy system to achieve more precise membership values under different error conditions.
    Finally, inference engine calculations and defuzzification are used to determine the learning rate variation of the MIT rule controller. This variation further improves the system's response speed and robustness, achieving faster convergence times. The proposed control strategies are implemented using a digital signal processor (TMS320F28335), with rise time and settling time used as performance comparison indicators to validate the three control strategies. Experimental results demonstrate significant performance improvements of the proposed controller compared to the conventional MIT rule controller, ensuring system stability even under load variations.

    謝辭 i 摘要 ii ABSTRACT iv 目次 vi 表次 vii 圖次 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.3 研究目的 7 1.4 研究方法 9 1.5 研究架構 10 第二章 Zeta 直流-直流轉換器系統介紹 11 2.1 Zeta直流-直流轉換器電路架構 11 2.1.1 Zeta直流-直流轉換器操作模式 12 2.1.2 Zeta直流-直流轉換器元件參數設計以及PCB佈局 19 2.2 MIT規則控制系統 21 第三章 模糊規則理論 23 3.1 模糊理論簡介 23 3.2 模糊控制系統 27 第四章 模糊MIT規則之Zeta直流-直流轉換器控制系統 29 4.1模糊MIT規則簡介 29 4.2模糊控制系統設計 29 4.3模糊MIT規則控制器設計 33 第五章 最佳化模糊MIT規則之Zeta 直流轉換器控制系統 37 5.1簡介 37 5.2教與學最佳化演算法控制策略 37 5.2.1教與學最佳化演算法之數學模型 38 5.2.2教與學最佳化演算法之流程 40 5.3單值模糊系統 42 5.4基於教與學最佳化策略之自適應單值模糊MIT規則控制器 43 第六章 模擬與結果討論 44 6.1元件參數及性能指標定義 44 6.2模擬與測試說明 45 6.3 MIT規則控制 47 6.4模糊MIT規則控制 52 6.5 TLBO最佳化模糊MIT規則控制 58 6.6 模擬結果討論 68 第七章 實驗平台介紹與實作結果討論 70 7.1 實驗平台說明 70 7.2 MIT規則控制 75 7.3模糊MIT規則控制 80 7.4 TLBO最佳化模糊MIT規則控制 86 7.5 實驗結果討論 92 第八章 結論與未來展望 95 參考文獻 96

    [1]D. Ravi and A. Ghosh, “Voltage Mode Control of Buck Converter Using Practical PID Controller,” 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP), 2022, pp. 1-6.
    [2]S. Kapat, “PID Controller Tuning of Voltage Mode Controlled Buck Converter for Fast Recovery Up to Slew Limit,” 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), 2022, pp. 1827-1832.
    [3]M. Swathi and P. Ramesh, “Modeling and Analysis of Model Reference Adaptive Control by Using MIT and Modified MIT Rule for Speed Control of DC Motor,” 2017 IEEE 7th International Advance Computing Conference (IACC), 2017, pp. 482-486.
    [4]E. Mathew, T. Pawar and B. Jaganatha Pandian, “Control of a Coupled CSTR Process Using MRAC-MIT Rule,” 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), 2019, pp. 1-5.
    [5]P. Azer and A. Emadi, “Generalized State Space Average Model for Multi-Phase Interleaved Buck, Boost and Buck-Boost DC-DC Converters: Transient, Steady-State and Switching Dynamics,” IEEE Access, 2020, vol. 8, pp. 77735-77745.
    [6]S. Kumar, R. Kumar and N. Singh, “Performance of Closed Loop SEPIC Converter with DC-DC Converter for Solar Energy System,” 2017 4th International Conference on Power, Control & Embedded Systems (ICPCES), 2017, pp. 1-6.
    [7]C. S. Tripathy, S. K. Dalai, T. Samal and R. Sahu, “Modeling and Simulation of Cuk-Converter Using Single Phase Matrix Converter Topology, ” 2021 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology(ODICON), 2021, pp. 1-5.
    [8]S. Hadji, A. Belkaid, K. Kayisli, I. Colak, S. Aissou and L. Larbi, “A Comparative Analysis of Cuk, SEPIC, and Zeta Converters as Maximum Power Point Trackers,” 2024 12th International Conference on Smart Grid (icSmartGrid), 2024, pp. 539-544.
    [9] C. W. Yang and X. Z. Jin, “Robust Adaptive Control for DC-DC Buck Converters with Load Fluctuation,” 2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS), 2020, pp. 1318-1322.
    [10] J. Fei and Z. Feng, “Adaptive Super-Twisting Sliding Mode Control for Micro Gyroscope Using Fuzzy Sliding Gain,” 2019 12th Asian Control Conference (ASCC), 2019, pp. 1425-1430.
    [11] S. Lihan, M. Jie and Y. Baoqing, “Fuzzy PID Design of Vehicle Attitude Control Systems,” 2020 Chinese Control And Decision Conference (CCDC), 2020, pp. 1826-1830.
    [12] J. Kuang, F. Meng and L. Duan, “Robust Control of Tank Gun Pointing Control System Based on Singular Perturbation Theory, ” 2024 7th International Symposium on Autonomous Systems (ISAS), 2024, pp. 1-6.
    [13] R. Wang, Z. Zhou and G. Qu, “Fuzzy Neural Network PID Control Based on RBF Neural Network for Variable Configuration Spacecraft,” 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 2018, pp. 1203-1207.
    [14] P. R. Babu, S. R. Prasath and R. Kiruthika, “Simulation and Performance Analysis of CCM Zeta Converter with PID Controller,” 2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015], 2015, pp. 1-7.
    [15] C. G. M and P. B. Savitha, “Comparison Study of Buck-Boost and Zeta Converter for Real Time Application,” 2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT), 2022, pp. 1-5.
    [16] H. Ghojavand and E. Adib, “A Single-Switch Soft-Switched High Step-Down Zeta Converter With Low Output Current Ripple,” in IEEE Transactions on Power Electronics, 2023, vol. 38, pp. 5024-5031.
    [17] A. A. Ponomarev, Y. I. Kudinov, F. F. Pashchenko and E. S. Duvanov, “Analysis and Synthesis of Adaptive PID Controller with MRAC-MIT System,” 2020 2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA), 2020, pp. 527-532.
    [18] E. Mathew, T. Pawar and B. Jaganatha Pandian, “Control of a Coupled CSTR Process Using MRAC-MIT Rule,” 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), 2019, pp. 1-5.
    [19] L. A. Zadeh, “Fuzzy Sets,” Information and Control, 1965, pp. 338-353.
    [20] M. R, J. S, K. U and J. T, “Evapotranspiration Computation for Irrigation Using Mamdani Fuzzy Inference System,” 2021 4th International Conference on Recent Trends in Computer Science and Technology (ICRTCST), 2022, pp. 31-35.
    [21] N. D. Bhat, D. B. Kanse, S. D. Patil and S. D. Pawar, “DC/DC Buck Converter Using Fuzzy Logic Controller, ” 2020 5th International Conference on Communication and Electronics Systems (ICCES), 2020, pp. 182-187.
    [22] Jumiyatun, M. Ashari, Soedibyo, O. Penangsang and I. Mahmudi, “Fuzzy Based Wide Range Voltage Control of DC Step-Up Zeta Converter For Energy Management System,” 2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), 2021, pp. 423-428.
    [23] N. Tiwary, V. N. Naik, A. K. Panda, A. Narendra and R. K. Lenka, “Fuzzy Logic Based Direct Power Control of Dual Active Bridge Converter,” 2021 1st International Conference on Power Electronics and Energy (ICPEE), 2021, pp. 1-5.
    [24] S. Izadi, M. Izadi, K. Jabari and B. Zaker, “Enhancing Efficiency in Bidirectional DC-DC Converters Through PSO-Based Optimization,” 2024 9th International Conference on Technology and Energy Management (ICTEM), 2024, pp. 1-6.
    [25] L. Sun, “Self-optimizing Robot Control Based on Adaptive Genetic Algorithms,” 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 2020, pp. 1707-1710.
    [26] P. D. Reddy and L. R. Parvathy, “Prediction Analysis Using Random Forest Algorithms to Forecast the Air Pollution Level in a Particular Location,” 2022 3rd International Conference on Smart Electronics and Communication (ICOSEC), 2022, pp. 1585-1589.
    [27] Rao, R. Venkata, Vimal J. Savsani, and Dipakkumar P. Vakharia. “Teaching–learning-based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems.” Computer-aided design ,2011, pp. 303-315.
    [28] F. Dib, I. Boumhidi, N. E. Akchioui and N. Benaya, “Sliding Mode Control Optimized by Teaching Learning-Based Optimization Algorithm for Variable Speed Wind Turbine System,” 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), 2019, pp. 1-6.
    [29] Y. Wenxia, Q. Tianyi, L. Wenwu and Z. Zhi, “Application of Teaching Learning Based Optimization in Long Term Optimal Reservoir Operation,” 2018 10th International Conference on Modelling, Identification and Control (ICMIC), 2018, pp. 1-5.
    [30] R. J. Pawar and B. J. Parvat, “MRAC and Modified MRAC Controller Design for Level Process Control,” 2018 Indian Control Conference (ICC), 2018, pp. 217-222.
    [31] X. Zhang, L. Xu, Z. Wang and J. Rodriguez, “None-Motor-Parameter Model Predictive Current Control for PMSM Drives,” 2023 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), 2023, pp. 1-5.
    [32] 林長華,電源轉換器基礎教材,國立臺灣科技大學電機工程學系,臺北,2023
    [33] “Texas Instruments Incorporated,” https://www.ti.com/lit/an/slyt372/slyt372 pdf
    [34] E. Vuthchhay and C. Bunlaksananusorn, “Modeling and Control of a Zeta Converter,” The 2010 International Power Electronics Conference - ECCE ASIA, 2010, pp. 612-619.
    [35] "模糊理論," https://api.lib.ntnu.edu.tw
    [36] D. J. Richter and R. A. Calix, “Using Double Deep Q-Learning to Learn Attitude Control of Fixed-Wing Aircraft,” 2022 16th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), 2022, pp. 646-651.
    [37] "模糊邏輯過程控制," https://www.newton.com.tw
    [38] 王彥涵,基於教與學最佳化策略之適應性混合模糊PID控制應用於音圈馬達運動平台,國立臺灣師範大學電機工程學系碩士論文,臺北,2023。
    [39] M. Kendzi and A. Aissaoui, “Comparison Between the MIT Rule and Fuzzy Logic Controller to Adapting the Power Generated by a Doubly Fed Induction Generator Integrated in a Wind System,” 2022 10th International Conference on Smart Grid (icSmartGrid), 2022, pp. 231-235.
    [40] Y. Lu, “Adaptive-Fuzzy Control Compensation Design for Direct Adaptive Fuzzy Control,” in IEEE Transactions on Fuzzy Systems, 2018, pp. 3222-3231.
    [41] M. Jiang, W. Zhang and H. Zhang, “Broad Learning System Based on Triangular Fuzzy Membership Function,” 2023 8th International Conference on Image, Vision and Computing (ICIVC), 2023, pp. 842-846.
    [42] R. Kala and P. Deepa, “Removal of Rician Noise in MRI Images Using Bilateral Filter by Fuzzy Trapezoidal Membership Function,” 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), 2017, pp. 1-6.
    [43] P. Biswas and K. K. Halder, “Speckle Noise Reduction from Medical Images Using Gaussian Fuzzy Membership Function,” 2021 3rd International Conference on Electrical & Electronic Engineering (ICEEE), 2021, pp. 41-44.
    [44] A. Kumar and S. Kumar, “An Approach for Enhancement of Low Contrast Gray Scale Image Using Fuzzy Logic and Sigmoid Function,” 2024 2nd International Conference on Device Intelligence, Computing and Communication Technologies (DICCT), 2024, pp. 1-6.
    [45] A. Üsküdar, Y. S. Türkan, Y. S. Özdemir and A. H. Öz, “Fuzzy AHP - Center of Gravity Method Helicopter Selection and Application,” 2019 8th International Conference on Industrial Technology and Management (ICITM), 2019, pp. 170-174.
    [46] K. -C. Hung, K. -P. Lin and M. Yin, “Enhancement of Fuzzy Weighted Average and Application to Military UAV Selected Under Group Decision Making,” 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 2009, pp. 191-195.
    [47] J. S. Taur, C. W. Tao and C. C. Tsai, “Temperature Control of a Plastic Extrusion Barrel Using PID Fuzzy Controllers,” Proceedings IEEE Conference on Industrial Automation and Control Emerging Technology Applications, 1995, pp. 370-375.
    [48] G. Radman and Y. Smaili, “Performance Evaluation of PID Power System Stabilizer for Synchronous Generator,” Conference Proceedings '88., IEEE Southeastcon, 1988, pp. 597-601.
    [49] B. Misra and G. K. Mahanti, “Teaching Learning Based Optimization Algorithm for Synthesis of a Thinned Elliptical Array Antenna,” 2021 6th International Conference on Communication and Electronics Systems (ICCES), 2021, pp. 451-454.
    [50] J. He and X. Liu, “Hybrid Teaching–Learning-Based Optimization for Workflow Scheduling in Cloud Environment,” in IEEE Access, 2023, vol. 11, pp. 100755-100768.
    [51] M. Ratchagit and H. Xu, “Parameter Identification of Stochastic Delay Differential Equations Using Differential Evolution,” 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), 2022, pp. 1-3.
    [52] S. G. R. Prabhu, P. Kyberd and J. Wetherall, “Investigating an A-star Algorithm-Based Fitness Function for Mobile Robot Evolution,” 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC), 2018, pp. 771-776.
    [53] I. Baturone, S. Sanchez Solano, A. Barriga and J. L. Huertas, “A Switched Capacitor Based Singleton Fuzzy Controller,” Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference, 1994, vol 2, pp. 1303-1307.
    [54] J.B.L. Fermeiro, J.A.N. Pombo, M.R.A. Calado, S.J.P.S. Mariano, “A New Controller for DC-DC Converters Based on Particle Swarm Optimization,” Applied Soft Computing, 2017, pp. 418-434.
    [55] “FAN7371 Datasheet,” https://www.alldatasheet.com/datasheet-pdf/pdf/201440/FAIRCHILD/FAN7371.html
    [56] “Tech Web,” https://techweb.rohm.com.tw/product/power-ic/dcdc/dcdc-design

    無法下載圖示 電子全文延後公開
    2029/12/05
    QR CODE