研究生: |
汪旖文 Wang, Yi-wen |
---|---|
論文名稱: |
橢圓齒盤對公路自行車騎乘效率及下肢肌電訊號之影響 The effect of non-circular chainring on road bike riding efficiency and lower extremity electromyography |
指導教授: |
謝伸裕
Hsieh, Shen-Yu |
學位類別: |
碩士 Master |
系所名稱: |
體育學系 Department of Physical Education |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 40 |
中文關鍵詞: | 橢圓齒盤 、運動經濟性 、肌電圖 |
英文關鍵詞: | non-circular chainring, efficiency, electromyography |
論文種類: | 學術論文 |
相關次數: | 點閱:539 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
橢圓齒盤(non-circular chainring)是一項為了增進踩踏效率而發展出的產品,其原理是改進原本兩腿作圓周運動踩踏時,接近上下死點處雙腿輸出功率較小的缺點,利用減少踩踏週期中這兩處齒片切線點到中軸的半徑,增加扭矩、減少齒數,並讓上下死點附近的施力齒快速通過。同理,當雙腳前後死點時,踩踏力量最大時,此時橢圓齒盤增加前齒片的切線點到中軸的半徑,增加齒數,讓施力時連貫,以期踩踏時發揮最大功率。目的:比較受試者在使用一般圓形齒盤及橢圓齒盤時的攝氧量,以評估其工作效率。比較受試者在使用一般圓形齒盤及橢圓齒盤時的下肢肌群肌電訊號(股直肌、股二頭肌、脛前肌、腓腸肌)之活動情形。方法:以8位國內男性優秀公路自行車選手(年齡:24.50 ± 4.23歲;身高:172.67 ± 5.1公分;體重:67.50 ± 10.0公斤;最大攝氧量:67.14 ± 5.80 ml/kg/min),自行車齡3年以上,每週訓練時間20小時以上或週訓練量600公里以上,以平衡次序法使用一般齒盤或橢圓齒盤進行以無氧閾值(AT)為基準的三種強度(AT+ 10%、AT、AT- 20%)之騎乘,每種強度騎5分鐘,記錄其間的攝氧量及肌電訊號。結果:使用一般齒盤與橢圓齒盤在3種運動強度下之攝氧量並無顯著差異。在AT+ 10%強度下,股直肌在使用橢圓齒盤時的均方根肌電訊號顯著低於一般齒盤;在其餘強度時,股直肌、股二頭肌、脛前肌及腓腸肌在使用兩種不同齒盤時,肌電訊號皆無顯著差異。結論:橢圓齒盤無法提升專業自行車手進行次最大運動強度測驗時的運動經濟性。肌電訊號部分,於強度AT+ 10%下,使用橢圓齒盤時股直肌肌肉活化程度較小,表示較省力。但是無法減少其餘肌肉的肌肉活化程度,無法達到省力的效果。
Non-circular chainring is a product created for improving cycling performance. The principle of non-circular chainring is based on the modification of the gear ration of the chainring. While pedaling at the top and bottom dead point, the distance between buttom bracket and the point of tangency of the chainring becomes shorter. Therefore, the radius of chainring was decreased, the torque of the pedaling was increase, and the number of teeth was reduced virtually. In the same way, while pedaling to the circumstance of maximal power (3 O’clock), the design could increase the diameter of chainring, increase the number of teeth virtually, to have the more power output. Purpose: To investigate the effect of using non-circular chaining on road bike riding efficiency and electromyography( EMG) of lower extremity muscles ( rectus femoris, biceps femoris, tibial anterior, & gastrocnemius). Methods: Eight male elite cyclists (age: 24.50 ± 4.23 yrs old, height: 172.67 ± 5.1cm, weight: 67.50 ± 10.0kg, VO2max: 67.14 ± 5.80 ml/kg/min ) with more than 3 years cycling experience were recruited in this study. All of them train at least 20 hours or 600 km per week. Subjects randomly use conventional circular chainring or non-circular chainring to perform 3 riding trials for 5 minutes respectively under 3 different intensities which were 10% above anaerobic threshold (AT+10%), anaerobic threshold (AT), 20% below anaerobic threshold (AT-20%). VO2 and EMG were recorded during these 5 minutes tests. Results: There’s no significant difference on VO2 between using conventional chainring and non-circular chainring. At the intensity AT+ 10%, the EMG activity of rectus femoris using non-circular chainringwas significantly lower than using conventional chainring. However, there were no significant difference in other muscles between using these two different chainrings. Conclusion: For elite cyclists, non-circular chainring cannot enhance their riding efficiency at sub-maximal workload. At the intensity AT+ 10%, using non-circular chaining may reduce rectus femoris muscle activation.
吳武政(2001)。以誘導式歸納途徑法探討自行車騎乘姿勢與車架尺寸之關係。未出版碩士論文,成功大學工業設計研究所,台南市,台灣。
周峻忠(2006)。不同騎乘姿勢對原地腳踏車運動之生理反應的影響。未出版碩士論文,國立臺灣師範大學,台北市,台灣。
林正常、林貴福、徐台閣、吳慧君譯(2002)。運動生理學 (Scott, K. P., & Edward, T H. 著,2001年出版)。台北市:藝軒。
Atkinson, G., Davison, R., Jeukendrup, A., & Passfield, L. (2003). Science and cycling: current knowledge and future directions for research. Journal of Sports Science 21, 767-787
Barani, D., Commandre, F., and Digion, A. (1994). The ‘Harmonic Chainring’: presentation and biomechanical characteristics. Medicine and Science in Sports and Exercise 68, 77-81.
Belen, L., Habrard, M., Micallef, J.P., Perrey, S., Le Gallais, D. (2007). Cycling performance and mechanical variables using a new prototype chainring. Europe Journal of Applied Physiology 101, 721–726.
Burke, E.R. (1994). Proper fit of the bicycle. Clinics in Sports Medicine 13, 1-14.
Dorel, S., Couturier, A., & Hug, F. (2008). Intra-session repeatability of lower limb muscles activation pattern during pedaling. Journal of Electromyography and Kinesiology, 18(5), 857-865.
Hansen, E.A., Jensen, K., Hallen, J., Rasmussen, J., & Pedersen, P.K. (2009). Effect of Chain Wheel Shape on Crank Torque, Freely Chosen Pedal Rate, and Physiological Responses during Submaximal Cycling. Journal of Physiological Anthropology, 28(6), 261-267.
Hue, O., Galy, O., Hertogh, C., Casties, J.F., Prefaut, C. (2001). Enhancing cycling performance using an eccentric chainring. Medicine & Science in Sports & Exercise 33, 1006–1010.
Hue, O., Chamari, K., Damiani, M., Blonc, S., Hertogh, C., (2007). The use of an eccentric chainring during an outdoor 1km all-out cycling test. Journal of Science and Medicine in Sport 10, 180—186.
Hug, F., & Dorel, S. (2009). Electromyographic analysis of pedaling: A review. Journal of Electromyography and Kinesiology 19(2), 182-198.
Hull, M.L., Williams, M., Williams, K., Kautz, S. (1992). Physiological response to cycling with both circular and noncircular chainrings. Medicine & Science in Sports & Exercise 24, 1114–1122.
Lucia, A., Balmer, J., Davison, R.C., Perez, M., Santalla, A., Smith, P.M., (2004). Effects of the rotor pedaling system on the performance of trained cyclists during incremental and constant-load cycle-ergometer tests. International Journal of Sports Medicine 25, 479–485.
Malfait, L., Storme, G., Derdeyn, M. (2010). Comparative biomechanical study of circular and non- circular chainrings for endurance cycling at constant speed.
Martinez, A.C., Vicente, G.V., Calvo, J.S., Zudaire, I.L., (2006). Preliminary report on Q-rings. University of Vallodolid, Spain.
Okajima, S.,(1983). Designing chainwheels to optimize the human engine. Bike Techniques 2, 1–7.
Rankin, J.W., Neptune, R.R. (2008). A theoretical analysis of an optimal chainring shape to maximize crank power during isokinetic pedaling. Journal of Biomechanics 41, 1494-1502.
Ratel, S., Duche, P., Hautier, C.A., Williams, C.A., Bedu, M. (2004). Physiological responses during cycling with noncircular ‘‘harmonic’’ and circular chainrings. European Journal of Applied Physiology 91, 100–104.
Rodrı´guez-Marroyo, J.A., Garcı´a-Lo´pez, J., Chamari, K., Co´rdova, A., Hue, O., Villa, J.G. (2009). The rotor pedaling system improves anaerobic but not aerobic cycling performance in professional cyclists. Europe Journal of Applied Physiolology 106, 87–94.
Santalla, A., Manzano, J.M., Perez, M., Lucia, A. (2002). A new pedaling design: the rotor effects on cycling performance. Medicine & Science in Sports & Exercise 34, 1854–1858.
So, R. C. H., Ng, J. K. F., & Ng, G. Y. F. (2005). Muscle recruitment pattern in cycling: A review. Physical Therapy in Sport, 6(2), 89-96.