簡易檢索 / 詳目顯示

研究生: 張桓僕
Chang, Huan-Pu
論文名稱: 氧缺陷對於氧化鋅薄膜奈米摩擦性質之影響
Influence of the Oxygen Vacancies on the Frictional Properties of Zinc Oxide Thin Films at the Nanoscale
指導教授: 邱顯智
Chiu, Hsiang-Chih
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 42
中文關鍵詞: 氧化鋅氧缺陷原子力顯微鏡摩擦力光催化效應濕潤性
英文關鍵詞: zinc oxide, oxygen vacancies, atomic force microscopy, friction, photo-catalyst effect, wettability
DOI URL: https://doi.org/10.6345/NTNU202203935
論文種類: 學術論文
相關次數: 點閱:193下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用原子力顯微鏡的技術,來探討奈米尺度下,脈衝雷射沉積法所成長的氧化鋅薄膜其表面摩擦力對探針掃描速度的關係。我們發現氧缺陷的存在對於氧化鋅表面的摩擦性質扮演著重要角色。在低相對溼度的環境下,由於熱擾動造成的黏滑效應之影響,摩擦力與探針掃描速度呈正相關。然而,在高相對溼度的環境下,探針與氧化鋅表面的摩擦力在掃描速度小於2.7μm/s時與掃描速度呈現負相關,而在大於2.7μm/s時則呈正相關。這是由於氧缺陷可以吸附大氣中的水分子,因此在低速時,水分子有足夠的時間可以在探針與樣品粗糙表面間的空隙形成毛細水橋,使得摩擦力增大。但隨著速度增加,毛細水橋對摩擦力造成的效應將漸漸降低,使得摩擦力隨速度增加而減小。當毛細水橋不再有足夠時間形成時,摩擦力則再度與速度呈正相關。接著我們又利用光催化效應來操控氧化鋅表面的親疏水性。氧化鋅表面在被波長為365 nm的紫外光照射後將由疏水性轉變為親水性。此時所量得的摩擦力不僅大幅加,並且在不同濕度下,摩擦力對掃描速度皆呈現負相關。這是因為光催化反應可以大幅增加氧化鋅表面的氧缺陷,促進更多水分子的吸附,讓毛細水橋更容易在探針與氧化鋅間形成,進而影響了摩擦力對速度的關係。最後,利用光催化反應,氧化表面的溼潤性的轉變具有可逆性,因此我們可以利用此性質調控氧化表面摩擦力對速度的變化關係,這對未來利用氧化鋅為奈米元件材料的奈米機電系統將有應用的潛力。

    In this work, we investigate the velocity dependent friction on pulsed laser deposited (PLD) Zinc Oxide (ZnO) thin films by using atomic force microscopy (AFM). We found that the oxygen vacancies present in ZnO surface play an important role in the frictional properties of ZnO. At low relative humidity (R.H.), the measured friction shows a positive dependence on the sliding velocity due to the thermal activated stick-slip effect. At high R.H., when the sliding velocity of the AFM probe is less than 2.7 μm/s, the measured friction has a negative dependence on the sliding velocity, but becomes positively dependent when the velocity is larger than 2.7 μm/s. This is because oxygen vacancies present in ZnO surface tend to absorb water molecules from the ambient. Therefore, at low sliding velocity, water meniscus has sufficient time to form at the tip-ZnO contact, leading to the enhancement of friction force. With the increasing velocity, there will no sufficient time for water bridges to form, thus the friction will show positive dependence on the sliding velocity. In addition, we convert the wettability of ZnO surface from being hydrophobic to hydrophilic via the photo-catalyst effect. UV light with 365 nm wavelength is used to illuminate the ZnO surface. After UV exposure, the measured friction forces not only increase significantly but also show a negative dependence on the sliding velocity for all investigated R.H.. The photo-catalyst effect can generate excess oxygen vacancies on the surface, giving rise to the enhancement of water absorption that further promotes the formation of water bridge at the tip-ZnO contact. Furthermore, since the wettability conversion using photo-catalyst effect on the ZnO surface is repeatable, we might be able to use this method to control the velocity dependent friction of ZnO based nano-devices.

    致謝 i 摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 ix 第一章 序論 1 第二章 原子力顯微鏡簡介 3 2-1原子力顯微鏡技術發展 3 2-2工作原理 3 2-3原子力顯微鏡基本操作模式介紹 4 2-3-1接觸式 (Contact mode) 5 2-3-2非接觸式 (Non-contact mode) 5 2-3-3輕敲式 (Tapping mode) 5 2-4原子力顯微鏡探針彈性係數 (Spring constant) 校正 6 2-5力對距離曲線 (Force-distance curve) 7 2-6峰值力輕敲式 (Peak force tapping mode) 8 2-7側向力顯微鏡 (Lateral force microscope,LFM) 8 2-7-1側向力顯微鏡原理 8 2-7-2探針側向力彈性係數校正 9 第三章 奈米摩擦力簡介 13 3-1摩擦力的歷史與巨觀尺度的摩擦力介紹 13 3-2奈米摩擦力的特性 14 3-2-1摩擦力與接觸力學 14 3-2-2摩擦力與速度的關係 15 3-2-3環境溼度對摩擦力的影響 16 第四章 實驗材料和方法 18 4-1氧化鋅材料製備 18 4-1-1脈衝雷射沉積法 (PLD) 18 4-1-2 X光繞射 (XRD) 20 4-1-3光致螢光 (PL) 21 4-2摩擦性質量測 22 4-3光催化效應 (Photo-catalyst effect) 23 第五章 實驗結果與討論 26 5-1樣品表面形貌 26 5-2 X光繞射圖 27 5-3光致螢光結果分析 27 5-4濕潤性 (Wettability) 測量 28 5-5氧化鋅表面摩擦特性實驗 30 5-5-1濕度之影響 30 5-5-2光催化效應之影響 34 5-5-3毛細水橋之數值分析 37 第六章 結論與未來展望 40 參考文獻 41

    [1] S. Prasad and J. Zabinski, Wear 203, 498 (1997).
    [2] H. Hu, H.-F. Ji, and Y. Sun, Physical Chemistry Chemical Physics 15, 16557 (2013).
    [3] M. Kunat, S. G. Girol, U. Burghaus, and C. Wöll, The Journal of Physical Chemistry B 107, 14350 (2003).
    [4] A. Onsten, D. Stoltz, P. Palmgren, S. Yu, M. Göthelid, and U. O. Karlsson, The Journal of Physical Chemistry C 114, 11157 (2010).
    [5] H. Ye, G. Chen, H. Niu, Y. Zhu, L. Shao, and Z. Qiao, The Journal of Physical Chemistry C 117, 15976 (2013).
    [6] E. Riedo, F. Lévy, and H. Brune, Physical review letters 88, 185505 (2002).
    [7] R.-D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, and K. Hashimoto, The Journal of Physical Chemistry B 105, 1984 (2001).
    [8] 黃英碩, 科儀新知 26 (4), 7 (2005).
    [9] 黃英碩, 張嘉升, 洪紹剛, 陳彥甫, 胡恩德, 楊志文, 陳雅柔, 科儀新知 26 (4), 18 (2005).
    [10] N. Jalili and K. Laxminarayana, Mechatronics 14, 907 (2004).
    [11] J. M. Neumeister and W. A. Ducker, Review of Scientific Instruments 65, 2527 (1994).
    [12] J. L. Hutter and J. Bechhoefer, Review of Scientific Instruments 64, 1868 (1993).
    [13] J. Cleveland, S. Manne, D. Bocek, and P. Hansma, Review of Scientific Instruments 64, 403 (1993).
    [14] W. F. Heinz and J. H. Hoh, Trends in biotechnology 17, 143 (1999).
    [15] 林宏旻, 陳彥甫, 張家榮, 科儀新知 34 (3), 35 (2012).
    [16] M. Varenberg, I. Etsion, and G. Halperin, Review of Scientific Instruments 74, 3362 (2003).
    [17] B. Bhushan, Nanotribology and nanomechanics: an introduction (Springer Science & Business Media, 2008).
    [18] K. L. Johnson and K. L. Johnson, Contact mechanics (Cambridge university press, 1987).
    [19] Y. Sang, M. Dubé, and M. Grant, Physical review letters 87, 174301 (2001).
    [20] E. Gnecco, R. Bennewitz, T. Gyalog, C. Loppacher, M. Bammerlin, E. Meyer, and H.-J. Güntherodt, Physical Review Letters 84, 1172 (2000).
    [21] E. Riedo, E. Gnecco, R. Bennewitz, E. Meyer, and H. Brune, Physical review letters 91, 084502 (2003).
    [22] H. Liu, S. I.-U. Ahmed, and M. Scherge, Thin solid films 381, 135 (2001).
    [23] 丁一介,國立臺灣師範大學物理研究所碩士論文,103年7月。

    [24] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoc, Journal of applied physics 98, 041301 (2005).
    [25] 林麗娟, 工業材料 86, 100 (1994).
    [26] H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials (Wiley, 1974).
    [27] 謝嘉民, 賴一凡, 林永昌, 枋志堯, 科儀新知 26 (6), 39 (2005).
    [28] R. Wang, N. Sakai, A. Fujishima, T. Watanabe, and K. Hashimoto, The Journal of Physical Chemistry B 103, 2188 (1999).
    [29] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Nature 388, 431 (1997).
    [30] S. Wang, Y. Song, and L. Jiang, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 8, 18 (2007).
    [31] H. Liu, L. Feng, J. Zhai, L. Jiang, and D. Zhu, Langmuir : the ACS journal of surfaces and colloids 20, 5659 (2004).
    [32] X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, and D. Zhu, Journal of the American Chemical Society 126, 62 (2004).
    [33] B. Jin, S. Im, and S. Y. Lee, Thin Solid Films 366, 107 (2000).
    [34] X. Fan, J. Lian, Z. Guo, and H. Lu, Applied Surface Science 239, 176 (2005).
    [35] F. Shan, G. Liu, W. Lee, and B. Shin, Journal of Applied Physics 101, 053106 (2007).
    [36] B. Lin, Z. Fu, and Y. Jia, Applied Physics Letters 79, 943 (2001).
    [37] A. Schumacher, N. Kruse, R. Prins, E. Meyer, R. Lüthi, L. Howald, H. J. Güntherodt, and L. Scandella, Journal of Vacuum Science & Technology B 14, 1264 (1996).
    [38] J. Gao, R. Szoszkiewicz, U. Landman, and E. Riedo, Physical Review B 75, 115415 (2007).

    下載圖示
    QR CODE