簡易檢索 / 詳目顯示

研究生: 蔡豐任
Tsai, Feng-Jen
論文名稱: 優秀女子排球選手下肢負重增強式動作的神經力學分析
Neuromechanical Analysis of Loaded Plyometric Exercise on Lower Limbs in Elite Female Volleyball Players
指導教授: 劉宇
Liu, Yu
黃長福
Huang, Chen-Fu
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 162
中文關鍵詞: 增強式訓練增強式重量訓練肌電圖生物力學神經力學
英文關鍵詞: plyometric training, plyometric weight training, electromyography, biomechanics, neuromechanics
論文種類: 學術論文
相關次數: 點閱:324下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

優秀女子排球選手下肢負重增強式動作的神經力學分析
摘要
負重增強式訓練(Plyometric Weight Training)是一種結合重量訓練可增進最大肌力及增強式訓練可提升動作速度的爆發力訓練法。本研究旨在探討不同負荷下進行負重下蹲反彈跳(loaded counter-movement jump,簡稱LCMJ,典型的下肢負重增強式動作)訓練對爆發力、神經肌肉的徵召活化效果、運動單位的激發頻率…等神經力學參數的影響。
本研究以大專排球聯賽特優級優秀女子排球選手12人為受試對象(年齡:19.9±1.1歲,身高: 171.8±6.8公分,體重:64.83±6.03公斤)。本實驗先以Quattro Jump單軸測力板測量受試者下肢蹲舉的最大等長肌力,作為個別負荷強度的訂定依據,再隨機選擇不同負荷(最大等長肌力的0%, 10%, 20%, 30%, 40%),分別進行有、無反向動作的LCMJ與負重屈膝蹲跳(loaded squat jump,簡稱LSJ)動作測試,並利用測力板、位移計與Biovision肌電系統,同步收集受試者在史密斯訓練器進行LCMJ與LSJ動作的力量、位移與肌電訊號,再以 DasyLab與Acqknowledge軟體擷取相關的神經力學參數。肌電資料的收集包括股直肌、股外側肌、比目魚肌、腓外側肌、股二頭肌和脛骨前肌,肌電資料的分析是以標準化均方根肌電振幅(root mean square of EMG, 簡稱EMGrms)來評估運動單位的徵召量,而以中位數頻率(median frequency, 簡稱MDF)來評估運動單位的激發頻率與類型。統計方法是以相依樣本二因子變異數分析來考驗不同負荷與不同負重蹲跳動作對神經力學參數的差異。
研究結果顯示:負重增強式動作在力量與爆發力的輸出上具有力學上的優勢,LCMJ顯著優於LSJ,且隨負荷的增加而增加;但在神經支配因素的優勢上則受負荷重量與動作速度的雙重影響而抵銷其肌肉活化程度,這導致LCMJ在各負荷間的作用肌向心EMGrms並無顯著差異存在。在神經肌肉的活化效果上,LCMJ與LSJ之間的向心EMGrms皆無顯著差異,但因LCMJ向心速度快,其MDF均顯著高於LSJ,且LCMJ離心期的EMGrms隨負荷的增加而顯著增加。可見,負重增強式動作的主要神經力學效應在於增加離心期運動單位的徵召量,並在向心期激發高頻快縮肌運動單位參與收縮。
由本研究結果推論:負荷重量的大小是運動單位徵召量的主要決定因素,而運動單位激發頻率的高低主要取決於動作速度的快慢。因此,訓練過程必須兼顧強化運動單位徵召效果的重量負荷與強化高頻快縮肌運動單位參與收縮的速度負荷,兩者兼顧,以發揮最大的神經力學效應。而若以負重增強式動作來訓練肌力與爆發力,建議以漸增負荷至30%來訓練。
關鍵字:增強式訓練,增強式重量訓練,肌電圖,生物力學,神經力學。

Neuromechanical Analysis of Loaded Plyometric Exercise on Lower Limbs in Elite Female Volleyball Players.
Abstract
Loaded plyometric exercise (LPE) is a type of power training method which combines the advantages of both weight training and plyometric training. The purposes of this study were to investigate the neuromechanical advantages and effects of the loaded counter-movement jump (LCMJ, a typical type of LPE) on lower-limb’s power output, neuromuscular activation, recruitment and firing frequency of motor units (MU) under varied loads.
Twelve elite female volleyball players (age: 19.9±1.1, height: 171.8±6.8 cm, weight: 64.83±6.03 kg), who won the championship of University Volleyball Games in Taiwan in 2004, participated in this experiment. Firstly, maximal isometric force (MIF) of each subject on lower limbs was measured on Kistler’s Quattro Jump force plate, as the setting basis of different load intensity. They perform LCMJ and LSJ (loaded squat jump) on Smith Machine with different load (0%, 10%, 20%, 30%, and 40% of their MIF) randomly. Furthermore, force plate, displacement meter and Biovision’s EMG System were designed to synchronously collect the signals of force, displacement and EMG. Then relevant neuromechanical parameters were read for further analysis with DASYLab and Acqknowledge software. The collection of EMG’s data includes rectus femoris, vastus lateralis, soleus, gastrocnemius lateral head, hamstrings, and tibialis anterior. The standardizing root mean square of EMG (EMGrms) was aimed to assess the amount of MU recruited, and survey the recruit frequency and type of MU by median frequency (MDF). Statistical method adopted Two-way ANOVA to test the differences between different loads and motions on neuromechanical parameters.
The result of this study shows: Loaded plyometric exercise has biomechanical advantage on power output. LCMJ is superior to LSJ evidently, and the advantage increases with increasing load. But in the advantage of neural innervations factor, it is affected by both load and movement speed, along with existent individual differences, which leads to the EMGrms of LCMJ showing no significant difference among different loads during concentric contraction. On the effects of neuromuscular activation, LCMJ and LSJ have not shown obvious difference on EMGrms during concentric phase, but LCMJ is higher significantly than LSJ on MDF due to the faster concentric velocity, and EMGrms of LCMJ increases with increasing load during eccentric phase. It is obvious, the main neuromechanical effect of the loaded plyometric exercise lies in increasing the recruitment of motor units during eccentric contraction, and activating the high-frequency fast-twitch muscles of motor units to participated in concentric contraction.
In conclusion, weight load is the main decisive factor of MU recruited, and the firing frequency of MU depends on speed load mainly. Therefore, in order to inspire the best neuromechanical effects, strength training must give consideration to both the weight load that strengthens MU recruited and the speed load that intensifies higher MU firing frequency, and 30% of their MIF progressively was suggested when performs LPE.
Keyword: plyometric training; plyometric weight training; electromyography; biomechanics; neuromechanics.

目 次 口試委員與系主任簽字證書…...………………………………………………i 授權書 …………………………………………………………………………ii 中文摘要.……………………………………………………………………….v 英文摘要……………………………………………………………………….vii 誌謝詞………………………………………………………………………....ix 目次………….………..………………………………………………………..x 表次………………...………………………………………………………….xii 圖次…………………………………………...……………………………….xiv 第一章 緒論 第一節 研究背景………………………………………………...........1 第二節 研究問題與目的………………………………………………..6 第三節 研究假設……………………………………………………..…8 第四節 研究的重要性………………………………………………..…9 第五節 研究範圍與限制………………………………………………10 第六節 名詞操作性定義………………………………………………11 第二章 理論基礎與文獻探討 第一節 肌力訓練的生物力學基礎……………………………………15 第二節 肌力訓練的生理學基礎………………………………………17 第三節 肌力訓練的發展………………………………………………21 第四節 增強式訓練理論………………………………………………24 第五節 增強式重量訓練理論……….………………………………...33 第六節 肌力與肌電圖的關係之探討…………………………………39 第七節 肌力的神經支配特性……….………………………………...46 第八節 小結……………………………………………………………49 第三章 研究方法 第一節 實驗對象………………………………………………………50 第二節 實驗儀器與設備………………………………………………52 第三節 實驗設計………………………………………………………53 第四節 實驗動作與實驗步驟…………………………………………54 第五節 資料處理與統計分析方法……………………………………59 第四章 研究結果 第一節 不同動作與負荷的力學特徵…………………………….……76 第二節 不同動作與負荷的力學參數統計結果……………………….82 第三節 不同動作與負荷的肌電特徵……………………………….…95 第四節 不同動作與負荷的肌電參數統計結果…………………….…98 第五章 討論與結論 第一節 不同動作與負荷的力學特徵之討論……………...…………121 第二節 不同動作與負荷對力學參數的影響……………………...…130 第三節 不同動作與負荷的肌電特徵之討論………………………...133 第四節 不同動作與負荷對肌電參數的影響………………………...137 第五節 結論…………………………………………………………...146 引用文獻……………………..…………………………………………..…148 附錄一 受試者同意書…………………………………………………..….160 附錄二 作者個人小傳…………………………………………..………….162

引用文獻
王翔星(2000)。彈震式與漸進式阻力訓練對跆拳道選手爆發力增強效果之比較。未出版碩士論文,國立體育學院,桃園。
王健(2001)。運動疲勞的判定。運動生理週訊電子報,第102期。
田麥九(1997)。論運動訓練計畫。台北市:中國文化大學出版部。
古福明、石玉琴(1995)。踏跳動作中下肢肌的儲能。成都體育學院學報,21(4),75-78。
石慶賀(1991)。射箭技術與穩定性之肌電圖分析。未出版碩士論文,國立體育學院,桃園。
李志文(1999)。股四頭肌肌電疲勞閾值研究。行政院國家科學委員會專題研究計畫報告書。計畫編號:87WFA03B0450009。
林正常(1993)。運動科學與訓練。台北市:銀禾文化事業有限公司。
林正常(1995)。運動生理學實驗指引。台北市:師大書苑有限公司。
林正常、黃勝裕、陳重佑(1999)。蹲距跳與下蹲跳之垂直跳躍指標與等長肌力相關之探討。體育學報,27,91~98。
林富美﹑林則彬﹑賴亮全(譯)(1994)。蓋統生理學—生理及疾病機轉。台北市:華杏出版股份有限公司。
林政東(2004)。運動員肌力訓練。台北市:師大書苑。
林政東(2005)。漸增與瞬發動作的神經肌肉活動之分析。未出版博士論文,國立體育學院,桃園。
洪彰岑、莊榮仁、劉宇(1997)。直膝與屈膝垂直跳的生物力學分析比較。大專體育,29,105~111。
高強、尹吟青(1985)。表面肌電圖自動分析。中國運動醫學雜誌,第四卷第二期,95-102。
陳全壽(1998)。陳式反覆衝擊式肌力增強器對肌力、動力訓練效果之探討。1998年國際大專運動教練研討會報告書(頁105-117)。台北市:中華民國大專院校體育總會。
陳韶華(2000)。負重增強式訓練動態負荷、肌電特性之生物力學研究。未出版碩士論文,中國文化大學,台北市。
陳婉菁(2004)。不同震動刺激型態對等長收縮時肌肉活化程度之影響。未出版碩士論文,國立體育學院,桃園。
陳敦禮(1996)。淺談Plyometrics訓練。體育與運動雙月刊,98,49-53。
崔玉鵬、洪峰(2005)。表面肌電圖在人體運動研究中的應用。首都體育學院學報。2005年01期。
馮樹勇﹑李愛東(1995)。針對跳遠起跳中肌肉用力特點安排力量訓練的體會。 I.A.A.F Regional Development Center (R.D.C) , Beijing Bulletin.
彭清義(2003)。連續衝擊式與傳統式阻力訓練對力量輸出表現及肌肉活動現象之分析。未出版碩士論文,國立體育學院,桃園。
過家興編著(1991)。運動訓練學。北京:北京體育學院出版社。
蔡豐任(1998)。增強式訓練負荷定量控制效果之研究。未出版碩士論文,中國文化大學,台北市。
蔡豐任、劉宇(1998)。增強式訓練定量控制效果之研究。1998年國際大專運動教練科學研討會論文集(頁223-235)。台北市:中華民國大專院校體育總會。
蔡豐任、陳韶華、劉宇(2002)。增強式重量訓練動態負荷特徵與肌電現象之研究。聯合學報,20,243-269。
劉宇、蔡豐任(2000)。下肢增強式重量訓練動態負荷、肌電圖與訓練效果之研究。行政院國家科學委員會專題研究計畫成果報告書。計畫編號NSC-89-2413-H-034-001。
劉宇(1998)。動作控制與協調的生物力學原理及其在訓練上的應用。1998年國際大專運動教練研討會報告書(頁175-183)。台北市:中華民國大專院校體育總會。
劉宇、江界山、陳重佑(1996)。肌力與肌力診斷的生物力學基礎。台灣師大體育研究,2,151-179。
劉北湘、石玉琴、李曉峰、周繼和、高善芬、陳松、古富明(1994)。發展肌肉爆發力的最大動量訓練法研究。成都體育學院學報,20(1),78-85。
Adams, K., O’Shea, J. P., O’Shea, K. L., & Climstein, M. (1992). The effect of six weeks of squat, plyometric and squat-plyometric training on power production. Journal of Applied Sport Science Research, 6(1), 36-41.
Allerheiligen, W. B. (1994). Speed development and plyometric training.  In T. R. Baechle (Ed.), Essential of strength training and conditioning (pp. 314-344). Champaign, IL: Human Kinetics.
Baechle, T. R. (1994). Essential of strength training and conditioning. Champaign, IL: Human Kinetics.
Basmajian, J. V., & De Luca, C. J. (1985). Muscles alive: Their functions ruled by electromyography (5th ed.). Baltimore, MD: Williams & Wilkins.
Bloomfield, J., Ackland, T. R., & Elliott, B. C. (1994). Applied anatomy and biomechanics in sport. Blackwell Scientific Publications.
Bloomfield, J., Blanksby, B., Ackland, T., & Allison, G. (1990). The influence of strength training on overhand throwing velocity of elite water polo players. Australian Journal of Science and Medicine in Sport, 22, 63-67.
Bosco, C. (1982). Physiological considerations on vertical jump exercise after drops from variable heights. Volleyball Technical Journal, 6, 53-58.
Chu, D. A. (1992). Jumping into plyometrics. Champaign, IL: Leisure Press.
Chu, D. A. (1996). Explosive power & strength: Complex training for maximum results. Champaign, IL: Human Kinetics.
Chu, D. A., & Plummer, L. (1984). The language of plyometrics. National Strength and Conditioning Association Journal, 6, 30-31.
Chaffin, D. B. (1980). Muscle strength assessment from EMG analysis. Medicine and Science in Sports and Exercise, 12(3), 205-211.
Cram, C. R., Kasman, G. S. (1988). Introduction to surface electromyography. USA: Aspen Publishers, Inc.
Cronin, J., & Sleivert, G. (2005). Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Medicine, 35(3), 213-234.
Cronin, John B., McNair, Peter J., Marshall, Robert N. (2004). Power absorption and production during slow, large-amplitude stretch-shorten cycle motions. European Journal of Applied Physiology, 87(1), 59-65.
Desmedt, J. E., & Godaux, E. (1977). Ballistic contraction in man: Characteristic recruitment pattern of single motor units of the tibialis muscle. Journal of Physiology, 264, 673~694.
DeVries, H. A. (1968). Method for evaluation of muscle fatigue and endurance from electromyographic fatigue curves. American Journal of Physical Medicine, 47, 125~135.
Dugan, E.L., Doyle, T.L.A., Humphries, B., Hasson, C.J. & Newton, R. U. (2004). Determining the optimal load for jump squats: A review of methods and calculations. Journal of Strength and Conditioning Research, 18(3), 668-674.
Enoka, R. M. (2002). Neuromechanical of human movement (3rd ed). Champaign, IL: Human Kinetics.
Edgerton, V. R., Roy, R. R., Gregor, R. J., & Rugg, S. (1986). Morphological basis of skeletal muscle power output. In N. L. Jones, N. McCartney, & A. J. McComas (Eds.), Human muscle power (pp. 43-59). Champaign, IL: Human Kinetics.
Edman, K. A. P. (1979). The velocity of unloading shortening and its relation to sarcomere length and isometric force in vertebrate muscle fiber. Journal of Physiology, 291, 143-159.
Edwards, R. G., & Lippold, O. C. J. (1956). The relation between force and integrated electrical activity in fatigued muscle. Journal of Physiology, 132, 677-681.
Esliger, Dale Winfield. (2002). The neuromechanics of maximal effort squat jumps. Unpublished master thesis, University of New Brunswick, Canada.
Fenn, W. O., & Marsh, B. S. (1935). Muscle force at different speed of shortening. Journal of Physiology, 85, 277-296.
Fleck, S. J., & Kraemer, W. J. (1997). Designing resistance training programs (2nd ed). Champaign, IL: Human Kinetics.
Freund, Hans-Joachim. (1983). Motor unit and muscle activity in voluntary motor control. Physiology Reviews, 63 (2), 387-436.
Fry, A. C., & Kraemer, W. J. (1991). Physical performance characteristics of American collegiate football players. The Journal of Applied Sport Science Research, 5, 126-138.
Gambetta, V. (1997). Plyometrics: Myths and misconceptions. Retrieved from http://www.elitetrack.com/gambettaplyos.pdf.
Gerdle, B., Wretling, M. L., & Henriksson-Larsen K. (1988). Do the fibre-type proportion and the angular velocity influence the mean power frequency of the electromyogram? Acta Physiologica Scandinavica, 134, 341-346.
Goldenberg, Lonre. (1998). Plyometrics: The bridge between strength & power. Retrieved from http://www.accottawa.com/newsInfo /articles/plyometrics.html.
Grimby, L., Hannerz, J., & Hedman, B. (1981). The fatigue and voluntary properties of single motor units in man. Journal of physiology, 316, 545-554.
Guyton, A. C. (1986). Textbook of medical physiology (7th ed.). Philadelphia: W. B. Saunders.
Hakkinen, K., Alen, M., & Komi, P. V. (1984). Neuromuscular, anaerobic and aerobic performance characteristics of elite power athletes. European Journal of Applied Physiology and Occupational Physiology, 53, 97-105.
Hakkinen, K., Alen M., & Komi, P. (1985). Electromyographic and muscle fibre characteristics of human skeletal muscle during strength training and detraining. Acta Physiologica Scandinavica, 125, 573-585.
Hakkinen, K., Komi, P., & Alen, M. (1985). Effect of explosive type strength training on isometric force and relaxation-time, electromyographic and muscle fibre characteristics of leg extensor muscles. Acta Physiologica Scandinavica, 125, 587-600.
Hannerz, J., (1974). Discharge properties of motor units in relation to recrutiment order in voluntary contraction. Acta Physiologica Scandinavica, 91, 374-384.
Herzog, W., Sokolosky, J., Zhang, Y. T., & Guimaraes, A. C. S. (1998). EMG-force relation in dynamically contracting cat plantaris muscle. Journal of Electromyography and Kinesiology, 8, 147-155.
Hoeger, W. K., & Hoeger, S. (1994). Principles & labs for physical fitness and wellness (3rd ed.). Colorado: Morton Publishing Company. pp. 129-135.
Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London: series B, 126, 136-195.
Hunter, G. R. (2000). Muscle physiology. In T. R. Baechle (Ed), Essentials of strength training and conditioning (pp. 3-14). Champaign, IL: Human Kinetics.
Kaneko, M., Fuchimoto, T., Toji, H., & Suei, K. (1983). Training effect of differing load on the force-velocity relationship and mechanical power output in human muscle. Scandinavia Journal of Sport Science, 5(2), 50-55.
Kawamori, N., & Haff, G. G. (2004). The optimal training load for the development of muscular power. Journal of Strength and Conditioning Research, 18(3), 675-684.
Komi, P. V., & Buskirk, E. R. (1972). Effect of eccentric and concentric muscle conditioning on tension and electrical activity of human muscle. Ergonomics, 15, 417-434.
Komi, P. V. (1973). Relationship between muscle tension, EMG and velocity of contraction under concentric and eccentric work. In J. E. Desmedt (Ed.), New developments in electromyography and clinical neurophysiology (pp.596-606). Basel, Switzerland: Karger.
Komi, P. V. (1986). The stretch-shortening cycle and human power output. In N. L. Jones, N. McCartney, & A. J. McComas (Eds), Human Muscle Power (pp. 27-39). Champaign, IL: Human Kinetics.
Komi, P. V. & Bosco, C. (1978). Utilization of stored elastic energy in leg extensor muscles by men and women. Medicine and Science in Sports, 10, 261-265.
Komi, Paavo V., Linnamo, Vesa., Silventoinen, Pertti. (2000). Force and EMG power spectrum during eccentric and concentric actions. Medicine and Science in Sports and Exercise, 32(10), 1757-62.
Kritpet, T. T. (1989). The effects of six weeks of squat and plyometric training on power production. Unpublished master’s thesis, Oregon State University, USA.
Kulig, K., Andrews, J. G., & Hay, J. G. (1984). Human strength curves. Exercise and Sports Sciences Reviews, 12, 417-466. New York: Macmillan.
Lee, C. W. (1996). A new method to predict isometric force. Proceedings of the 1996 International Pre-Olympic Scientific Congress, Book of Abstracts (p. 102). Dallas, TX, USA: 1996 Pre-Olympic Congress.
Lee, C. W. (1998). More efficient method to predict isometric force. Proceedings of the 1998 Asian Conference of Sport Science and Physical Education, Abstract #A25.
Linthornea, Nicholas P. (2001). Analysis of standing vertical jumps using a force platform. American Journal of Physics, 69(11), 1198-1204.
Lippold, O. C. J., Redfearn, J. W. T., & Vuco, J. (1960). The Electromyography of fatigue. Ergonomics, 3(2), 121-131.
Lyttle, A. D., Wilson, G. J., & Ostrowski, K. J. (1996). Enhancing performance: Maximal power versus combined weights and plyometrics training. The Journal of Strength and Conditioning Research. 10(3), 173-179.
Moritani, T., Nagata, A., & Muro, M. (1982). Electromyographic manifestations of muscular fatigue. Medicine and Science in Sports and Exercise, 14(3), 198-202.
Milner-Brown, H. S., Stein, R. B., & Lee, R. G. (1975). Synchronization of human motor units: Possible roles of exercise and supraspinal reflexes. Electroencephalography and Clinical Neurophysiology, 38, 245-254.
Milner-Brown, H., Stein, R., & Yemm, R., (1975). The orderly recruitment of motor units during voluntary isometric contraction. Journal of Physiology, 230, 359-370.
Moritani, L. E. (1978). Electromyographic analysis of muscle strength gain: Neural and hypertrophic effects. National Strength and Conditioning Association Journal, 5, 32-37.
Moritani, T., Muro., M., Ishida, K., & Taguchi, S. (1987). Electrophysiological analysis of the effects of muscle power training. Research Journal of Physical Education in Japan, 1, 23-32.
Newton, R. U., Kraemer, W. J., Hakkinen, K., Humphries, B. J., & Murphy, A. J. (1996). Kinematic, kinetic, and muscle activity during explosive upper body movement. Journal of Applied Biomechanics, 12(1), 31-43.
Newton, R. U. (1997). Expression and development of maximal muscle power. Australia: Optimal Kinetics Pty Ltd. From http://www.innervations.com/maximalpowerbook.htm.
Nigg, B. M., & Herzog, W. (1994). Biomechanics of the musculo-skeletal system. John Willey & Sons Ltd.
O‘Shea, J. P. (1979). Super quality strength training for the elite athlete shot put, discus, javelin, and hammer throwers. Track and Field Quarterly Review, 79, 54-55.
O‘Shea, J. P. (1995). Quantum strength & power training. Corvallis, Oregon: Patrick’s Books.
Pandy, Marcus G., & Felix E. Zajac. (1991). Optimal muscular coordination strategies for jumping. Journal of Biomechanics, 24(1), 1-10.
Petrofsky, J. S., Rochelle, R. H., Burse, R. L., & Lind, A. R. (1975). The assessment of the static component to rhythmic exercise. European Journal of Applied Physiology and Occupational Physiology, 34, 55-63.
Petrofsky, J. S. (1979). Frequency and amplitude analysis of the EMG during exercise on bicycle ergometer. European Journal of Applied Physiology and Occupational Physiology, 41, 1-15.
Petrofsky, J. S., & Lind, A. R. (1980a). Frequency analysis of the surface electromyogram during isometric contractions. European Journal of Applied Physiology and Occupational Physiology, 43, 173-182.
Petrofsky, J. S., & Lind, A. R. (1980b). The influence of temperature on the amplitude and frequency components of the EMG during brief and sustained isometric contractions. European Journal of Applied Physiology and Occupational Physiology, 44, 189-200.
Rothstein, J. M., Delitto, A., Sinacore, D. R., & Rose, S. J. (1983). Electromyographic, peak torque, and power relationships during isokinetic movement. Physical Theraphy, 63, 926-933.
Rutherford, O., Greig, C., Sargent, A., & Jones, D. (1986). Strength training and power output: Transference effects in the human Quadriceps muscle. Journal of Sports Sciences, 4, 101-107.
Sale, D.G. (1988). Neural adaptation to resistance training. Medicine and Science in Sports and Exercise, 20, 135-145.
Schmidtbleicher, D. (1988). Muscular mechanics and neuromuscular control. Swimming Science V International Series Sport Science (pp. 131-148)., Champaign, IL: Human Kinetics.
Schmidtbleicher, D. (1992). Training for power events. In P. V. Komi (Ed.): Strength and power in sport (pp. 381-395). Oxford Blackwell Scientific Publications.
Schmidtbleicher, D. (1998). Strength and strength training. 1998年國際大專運動教練研討會報告書(頁246-247)。中華民國大專院校體育總會,台北市。
Semmler, J. G., & R. M. Enoka. (2000). Neural contributions to changes in muscle strength. In V. Zatsiorsky (Ed), Biomechanics in sport. USA: Blackwell Science, Inc.
Smith, D. B., Housh, T. J., Johnson, G. O., Evetovich, T, K., Ebersole., & Perry, S. R. (1998). Mechanomyographic and electromyographic responses to eccentric and concentric isokinetic muscle actions of the biceps bradii. Muscle Nerve, 21, 1438-1444.
Stone, M. H. (1982). Considerations in gaining a strength-power training effect: machines vs. free weights. National Strength and Conditioning Association Journal, 4, 22-24.
Takarada, Y., Hirano, Y., Ishige, Y., & Ishii, N. (1997). Stretch-induced enhancement of mechanical power output in human multijoint exercise with counter-movement. Journal of Applied Physiology, 83, 1749-1755. Retrieved January 30, 2007, from http:// jap.physiology.org/cgi/content/full/83/5/1749/F2
Verkhoshanski, Y. (1968). Perspectives in the improvement of speed-strength of jumpers. Yessis Review of Soviet Physical Education and Sports, 3, 28-34.
Verkhoshanski, Y. (1973). Depth jumping in the training of jumpers. Track Technique, 51, 1618-1619.
Willmore, J., & Costill, D. (1988). Training for sport and activity: The physiological basis of the conditioning process (3rd ed.). Dubuque, IL, USA: Wm C. Brown Publishers.
Wilmore, J. H., & Costill, D. L. (1994). Physiology of sport and exercise. Champaign, IL: Human Kinetics.
Wilson, G. J., Newton, R. U., Murphy, A. J., & Humphries, B. J. (1993). The optimal training load for the development of dynamic athletic performance. Medicine and Science in Sports and Exercise. 25(11), 1279-1286.
Winter, D. A. (1990). Biomechanics and motor control of human movement (2nd ed.). Canada: John Wiley & Sons, Inc.
Yessis, M. (1981). The key to strength development: Variety. National Strength and Conditioning Association Journal, 3, 32-34.
Zatsiorsky, V. M. (1992). Intensity of strength training facts and theory: Russian and eastern European approach. National Strength and Conditioning Association Journal, 14(5), 46-57.
Zatsiorsky, V. M. (2000). Biomechanics in sport. USA: Blackwell Science, Inc.

QR CODE