簡易檢索 / 詳目顯示

研究生: 徐郁潔
論文名稱: 以密度泛函為基礎設計分子力學參數:探討MEA和CO2之間的化學吸附
Designing force field parameters based upon Density Functional Theory for CO2 capture by monoethanolamine
指導教授: 蔡明剛
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 56
中文關鍵詞: CO2MEA
英文關鍵詞: carban dioxide, monoethanolamine
論文種類: 學術論文
相關次數: 點閱:129下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於溫室效應有關CO2的研究一直是很熱門的主題,當前CO2的減量是很重要的,其中不論選擇儲存CO2或利用CO2都需要捕捉CO2這一步驟,在研究上或工業上都已經有很多捕捉CO2的方法在使用,其中單乙醇胺(MEA)是很普遍用於CO2的捕捉上,所以我們想了解CO2和單乙醇胺(MEA)之間的反應關係,並希望能找出MEA在吸附CO2時的結構。
    我們會利用2種不同理論背景的軟體做計算;一種是計算方法以密度泛函理論(DFT)為主的Gaussian 09,另一種是計算分法以分子力學為主的Tinker,然後以Gaussian結果為標準,嘗試把Tinker的計算結果對Gaussian做誤差比較,再藉由調整其力場參數的方式使Tinker計算獲得的誤差能夠減少,讓其結果能與Gaussian相似。

    Because of the greenhouse effect, Carban dioxide research has been very popular topic. CO2 reduction is very important, whichever you choose to store CO2 or use CO2 both require to capture CO2. In research or industrial was already used many ways to capture CO2, Monoethanolamine (MEA) is very commonly used on capture CO2. So we want to know reaction relationship between CO2 and MEA.
    We used two different theoretical background’s software to do calculation. One is Gaussian 09, which is used Density Functional Theory (DFT) to do calculation. Another one is Tinker, which is used Molecular Mechanics way to do calculation. Use Gaussian results as a standard and take Tinker calculation’s results to compare with Gaussian. Then do error values between Gaussian and Tinker. Subsequently we want to obtain reduction of error value by adjust force filed parameter. Let Tinker results can be similar to Gaussian results.

    圖目錄 II 表格目錄 III 中文摘要 1 Abstract 2 第一章 導論 3 1-1 前言 3 1-2 減少二氧化碳的策略 4 1-3 研究目標 5 第二章 計算原理 7 2-1 量子力學 7 2-2 計算化學的理論及方法 8 2-2-2 第一原理方法(ab initio methods) 9 2-2-3 半經驗法(Semi-Empirical) 9 2-2-4 密度泛函理論(Density Functional Theory) 10 2-2-5 基底函數(Basis Sets) 11 2-3 計算方法 15 2-3-1 幾何優化(Geometry optimization) 15 2-3-2 單點能量(Single point energy) 17 2-4 本論文使用的計算方法 17 第三章 結果與討論 18 3-1 CO2和MEA之Gaussian 09計算 18 3-2 CO2和MEA之Tinker計算 21 3-2-1 Case 1: 電勢能(C-N) 21 3-2-2 Case 2:電勢能(C-N、C-O) 30 3-2-3 Case 3:電勢能(C-N、N-O) 37 3-2-4 Case 4:電勢能(C-N、C-O、N-O) 43 第四章 結論 51 參考文獻 52

    1. M. Mikkelsen, et al., "The teraton challenge. A review of fixation and transformation of carbon dioxide." Energy Environ. Sci. 2010, 3, 43.
    2. H. Yanga, et al., "Progress in carbon dioxide separation and capture: A review." J. Environ. Sci. 2008, 20, 14.
    3. X. Xiaoding and J. A. Moulijn, "Mitigation of CO2 by Chemical Conversion:  Plausible Chemical Reactions and Promising Products." Energy Fuels 1996, 10, 305.
    4. W. Seifritz, "CO2 disposal by means of silicates." Nature 1990, 345, 486.
    5. S. J. Baines and R. H. Worden, "Geological storage of carbon dioxide " J. Geol. Soc. London 2004, 233, 1.
    6. S. E. Strand and G. Benford, "Ocean Sequestration of Crop Residue Carbon: Recycling Fossil Fuel Carbon Back to Deep Sediments." Environ. Sci. Technol. 2009, 43, 1000.
    7. G. T. Rochelle, "Amine Scrubbing for CO2 Capture." Science 2009, 325, 1652.
    8. N. McCann, et al., "Kinetics and Mechanism of Carbamate Formation from CO2(aq), Carbonate Species, and Monoethanolamine in Aqueous Solution." J. Phys. Chem. A 2009, 113, 5022.
    9. C. Lastoskie, "Caging Carbon Dioxide." Science 2010, 330, 595.
    10. R. Vaidhyanathan, et al., "Direct Observation and Quantification of CO2 Binding Within an Amine-Functionalized Nanoporous Solid." Science 2010, 330, 650.
    11. T. Lewis, et al., "CO2 Capture in Amine-Based Aqueous Solution: Role of the Gas–Solution Interface." Angew. Chem. Int. Edit. 2011, 50, 10178.
    12. H.-B. Xie, et al., "Reaction Mechanism of Monoethanolamine with CO2 in Aqueous Solution from Molecular Modeling." J. Phys. Chem. A 2010, 114, 11844.
    13. E. F. d. Silva and H. F. Svendsen, "Ab Initio Study of the Reaction of Carbamate Formation from CO2 and Alkanolamines." Ind. Eng. Chem. Res. 2004, 43, 3413.
    14. B. Arstad, et al., "CO2 Absorption in Aqueous Solutions of Alkanolamines:  Mechanistic Insight from Quantum Chemical Calculations." J. Phys. Chem. A 2007, 111, 1222.
    15. P. V. Danckwerts, "The reaction of CO2 with ethanolamines." Chem. Eng. Sci. 1979, 34, 443.
    16. M. Caplow, "Kinetics of carbamate formation and breakdown." J. Am. Chem. Soc. 1968, 90, 6795.
    17. H.-C. Li and M.-K. Tsai, "A first-principle study of CO2 binding by monoethanolamine and mono-n-propanolamine solutions." Chem. Phys. 2015, 452, 9.
    18. C. J. Cramer, Essentials of Computational Chemistry: Theories and Models 2nd Edition. 2004.
    19. I. N. Levine, Quantum Chemistry, 7th Edition. 2013.
    20. E. G. Lewars, Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics 2nd ed. 2011.
    21. B. M. Rode, et al., The Basics of Theoretical and Computational Chemistry. 2007.
    22. R. G. Parr and W. Yang, "Density-Functional Theory of the Electronic Structure of Molecules." Annu. Rev. Phys. Chem. 1995, 46, 701.
    23. W. Kohn and L. J. Sham, "Self-Consistent Equations Including Exchange and Correlation Effects." Phys. Rev. 1965, 140, A1133.
    24. A. Castro, et al., "Propagators for the time-dependent Kohn–Sham equations " J. Chem. Phys. 2004, 121, 3425.
    25. D. C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems. 2001.
    26. A. R. Leach, Molecular Modelling. Principles and Applications 2nd ed. 2001.
    27. C. Møller and M. S. Plesset, "Note on an Approximation Treatment for Many-Electron Systems." Phys. Rev. 1934, 46, 618.
    28. J. S. Binkley and J. A. Pople, "Møller–Plesset theory for atomic ground state energies." Int. J. Quant. Chem. 1975, 9, 229.
    29. D. R. Hartree, "The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods." Math. Proc. Camb. Philos. Soc. 1928, 27, 89.
    30. P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas." Phys. Rev. 1964, 136, B864.
    31. S. F. Sousa, et al., "General Performance of Density Functionals." J. Phys. Chem. A 2007, 111, 10439.
    32. A. D. Becke, "Density-functional exchange-energy approximation with correct asymptotic behavior." Phys. Rev. A 1988, 38, 3098.
    33. C. Lee, et al., "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density." Phys. Rev. B 1988, 37, 785.
    34. S. Grimme, "Semiempirical GGA-type density functional constructed with a long-range dispersion correction." J. Comput. Chem. 2006, 27, 1787.
    35. P. M. W. Gill, "Molecular integrals Over Gaussian Basis Functions." Adv. Chem. Phys. 1994, 25, 141.
    36. S. F. Boys, "Electronic wave functions. I. A general method of calculation for stationary states of any molecular system." Proc. R. Soc. London Ser. A 1950, 200, 254.
    37. P. M. W. Gill and J. A. Pople, "The prism algorithm for two-electron integrals." Int. J. Quant. Chem. 1991, 40, 753.
    38. T. H. D. Jr., "Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen." J. Chem. Phys. 1989, 90, 1007.
    39. D. E. Woon and T. H. D. Jr., "Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon." J. Chem. Phys. 1993, 98, 1358.
    40. D. E. Woon and T. H. D. Jr., "Gaussian basis sets for use in correlated molecular calculations. V. Core‐valence basis sets for boron through neon " J. Chem. Phys. 1995, 103, 4572.
    41. P. J. Hay and W. R. Wadt, "Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg." J. Chem. Phys. 1985, 82, 270.
    42. W. R. Wadt and P. J. Hay, "Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi " J. Chem. Phys. 1985, 82, 284.
    43. P. J. Hay and W. R. Wadt, "Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals " J. Chem. Phys. 1985, 82, 299.
    44. L. E. Roy, et al., "Revised Basis Sets for the LANL Effective Core Potentials." J. Chem. Theory Comput. 2008, 4, 1029.
    45. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A.Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09; Gaussian Inc: Wallingford CT, 2009.
    46. J. W. Ponder and F. M. Richards, "An efficient newton-like method for molecular mechanics energy minimization of large molecules." J. Comput. Chem. 1987, 8, 1016.
    47. C. E. Kundrot, et al., "Algorithms for calculating excluded volume and its derivatives as a function of molecular conformation and their use in energy minimization." J. Comput. Chem. 1991, 12, 402.
    48. M. J. Dudek and J. W. Ponder, "Accurate modeling of the intramolecular electrostatic energy of proteins." J. Comput. Chem. 1995, 16, 791.
    49. Y. Kong and J. W. Ponder, "Calculation of the reaction field due to off-center point multipoles." J. Chem. Phys. 1997, 107, 481.
    50. R. V. Pappu, et al., "Analysis and Application of Potential Energy Smoothing and Search Methods for Global Optimization." J. Phys. Chem. B 1998, 102, 9725.
    51. P. Ren and J. W. Ponder, "Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation." J. Phys. Chem. B 2003, 107, 5933.
    52. N. L. Allinger, et al., "Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 1." J. Am. Chem. Soc. 1989, 111, 8551.
    53. J.-H. Lii and N. L. Allinger, "Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 2. Vibrational Frequencies and Thermodynamics." J. Am. Chem. Soc. 1989, 111, 8566.
    54. J.-H. Lii and N. L. Allinger, "Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 3. The van der Waals’ Potentials and Crystal Data for Aliphatic and Aromatic Hydrocarbons." J. Am. Chem. Soc. 1989, 111, 8576.
    55. N. L. Allinger, et al., "Structures of Norbornane and Dodecahedrane by Molecular Mechanics Calculations (MM3), X-ray Crystallography, and Electron Diffraction." J. Am. Chem. Soc. 1989, 111, 1106.
    56. N. L. Allinger, et al., "Molecular Mechanics. The MM3 Force Field for Alkenes." J. Comput. Chem. 1990, 11, 848.
    57. N. L. Allinger, et al., "Molecular Mechanics (MM3) Calculations on Conjugated Hydrocarbons." J. Comput. Chem. 1990, 11, 868.
    58. J.-H. Lii and N. L. Allinger, "Directional Hydrogen Bonding in the MM3 Force Field. I." J. Phys. Org. Chem. 1994, 7, 591.
    59. J.-H. Lii and N. L. Allinger, "Directional Hydrogen Bonding in the MM3 Force Field. II." J. Comput. Chem. 1998, 19, 1001.

    下載圖示
    QR CODE