研究生: |
賴禹承 Lai, Yu-Cheng |
---|---|
論文名稱: |
石墨烯應用於染料敏化太陽能電池之研製 Development of dye-sensitized solar cells using graphene materials |
指導教授: |
楊啟榮
Yang, Chii-Rong 吳俊緯 Wu, Jim-Wei |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 111 |
中文關鍵詞: | 石墨烯 、染料敏化太陽能電池 、化鍍技術 、鉑釕合金 |
英文關鍵詞: | graphene, dye-sensitized solar cells, chemical plating, PtRu |
DOI URL: | https://doi.org/10.6345/NTNU202203874 |
論文種類: | 學術論文 |
相關次數: | 點閱:137 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要分為兩個目的,第一個主要是利用常壓化學氣相沉積法(Atmospheric pressure chemical vapor deposition, APCVD)在大面積銅箔(20 cm * 30 cm)成長出品質均勻之石墨烯。透過拉曼光譜分析已證實可成長出I2D/IG比值為2~4左右之單層石墨烯(Single-layer graphene, SLG)。若將製程優化,期望能應用在染料敏化太陽能電池(Dye-sensitized solar cell, DSSC)的電極。第二個目的是透過化鍍技術,在機械剝離法所製備高品質石墨烯表面複合鉑(Pt)及鉑釕合金(PtRu)奈米顆粒,並用來作為DSSC之對電極材料。藉由Pt及PtRu奈米顆粒之高比表面積(High specific surface area),以及石墨烯與Pt之電極催化特性,以提升整體DSSC之轉換效率。化鍍製程是先將Pt之前驅物六氯鉑酸氫、釕前驅物氯化釕與石墨烯,加入還原劑乙二醇、緩衝溶液乙酸-氫氧化鈉,分別製作出石墨烯/Pt及石墨烯/PtRu複合材料,並將複合材料滴佈於導電玻璃基板上形成對電極。本研究所製備出之複合材料透過SEM、EDS及TEM量測,證實已成功將Pt及PtRu均勻複合於石墨烯表面,從結果得知石墨烯/Pt粒徑分布為1.5 nm~5.0 nm,平均在3.5 nm~4.0 nm占最多,其平均電阻值為2.73 Ω;而石墨烯/PtRu粒徑則是分布在2~4 nm,平均在2.5 nm占最多,其平均電阻值為6.44 Ω。經封裝組合成DSSC元件後,比較濺鍍法製備Pt膜、單純石墨烯膜、石墨烯/Pt及石墨烯/PtRu四種電極的轉換效率,分別為1.52 %、0.64 %、2.08 %、1.35 %。實驗結果顯示,石墨烯結合Pt後因為電性及催化特性較好,因此具有較高轉換效率,而在石墨烯/PtRu的部分也接近使用濺鍍法製備Pt膜所得到之轉換效率,透過簡易化鍍方法來製備複合材料,可減少製程所需成本,以及提升整體DSSC之轉換效率。
This study has two major research objectives: (1) Large-area and uniform synthesis of graphene on copper foil (20 cm * 30 cm) by atmospheric pressure chemical vapor deposition. In Raman spectroscopy, the I2D/IG ratio are 2~4 for the single-layer graphene (SLG). If the process to be improved, it can be applied in electrode of dye-sensitized solar cells (DSSC). (2) In the second objective, the chemical plating techniques is used to composite Pt nanoparticles (NPs) and PtRu NPs on high-quality graphene as the electrode of DSSC. Due to the Pt and PtRu NPs with high specific surface and graphene/Pt with high electrocatalytic activity, the conversion efficiency of the DSSC can be increased. Firstly, the H2PtCl6•6H2O and RuCl3 are dissolved in ethylene glycol and acetic acid-sodium hydroxide buffer solution, followed by dip-coating on FTO to form electrode. The SEM, EDS, and TEM measurements were carried out to characterize the hybrid materials. The results indicate that the Pt NPs size is in range of 1.5~5 nm, with an average size of 3.5~4.0 nm and PtRu NPs size is in range of 2~4 nm, with an average size of 2.5 nm. The average resistance of graphene/Pt and graphene/PtRu are 2.73 Ω and 6.44 Ω. The DSSC based on the sputtered Pt, graphene, graphene/pt and graphene/PtRu counter electrode achieved a power conversion efficiency of 1.52 %, 0.64 %, 2.08 %, 1.35 % under AM1.5 illumination of 100 mW cm−2, as a result, the graphene/Pt has highest conversion efficiency, which is due to that the graphene/Pt counter electrode has higher conductivity and better electrocatalytic activity for I3 −/I− redox reaction, and then the graphene/PtRu counter electrode has the conversion efficiency of 1.35 %, which is close to the conversion efficiency of sputtered Pt. The results demonstrate that the method with low cost and simple can improve the performance of DSSC.
1. Cornell University. Retrieved July 19, 2016, from
http://www.geo.cornell.edu/eas/energy/the_challenges/peak_oil.html
2. 蔡松雨, "摩拳擦掌 蓄勢待發的下世代太陽電池", 工業材料雜誌, vol. 284, pp. 100, (2010).
3. K. G. Reddy, T. G. Deepak, G. S. Anjusree, Sara Thomas, Sajini Vadukumpully, K. R. V. Subramanian, Shantikumar V. Nairb, and A. Sreekumaran Nair, "On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology", Phys. Chem. Chem. Phys., vol. 16, pp. 6838-6858, (2014).
4. J. Gong, J. Liang, and K. Sumathy, "Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials", Renewable and Sustainable Energy Reviews, vol. 16, pp. 5848-5860, (2012).
5. M. Grätzel, "Dye-sensitized solar cells", Journal of Photochemistry and Photobiology, vol. 4, pp. 145-153, (2003).
6. H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, "Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell", Nature, vol. 261, pp. 402-403, (1976).
7. B. O’regan, and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films", Nature, vol. 353, pp. 737-740, (1991).
8. A. Hinsch, J. M. Kroon, M. Späth, J. A. M. van Roosmalen, N. J. Bakker, P.Sommeling, N. Van der Burg, R. Kinderman, R. Kern, J. Ferber, C. Schill, M. Schubert, A. Meyer, T. Meyer, I. Uhlendorf, J. Holzbock, and R. Niepmann, "In: Proceeding of 16th European Photovoltaic Solar Energy Conference and Exhibition", Glasgow, Great Britain, (2000).
9. H. G. Agrell, J. Lindgren, and A. Hagfeldt, "Degradation mechanisms in a dye-sensitized solar cell studied by UV–VIS and IR spectroscopy", Solar Energy Materials, vol. 75, pp. 169-180, (2003).
10. Y. Li, L. Xu, H. Liua, and Y. Li, "Graphdiyne and graphyne: from theoretical predictions to practical construction", Chem. Soc. Rev, vol. 43, pp. 2572-2586, (2014).
11. H. O. Pierson, "Handbook of carbon, graphite, diamond, and fullerenes: properties, processing, and applications", William Andrew, pp. 61, (1993).
12. A. Ouerghi, M. Ridene, C. Mathieu, N. Gogneau, and R. Belkhou, "From nanographene to monolayer on 6H-SiC (001) substrate", Applied Physics Letters, vol. 102, pp. 253108, (2013).
13. Andrea C. Ferrari et al., "Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems", Nanoscale, vol. 7, pp. 4598-4810, (2015).
14. L. L. Li, C. W. Chang, H. H. Wu, J. W. Shiu, P. T. Wu, and E. W. G. Diau, "Morphological control of platinum nanostructures for highly efficient dye-sensitized solar cells", Journal of Materials Chemistry, vol. 22, pp. 6267-6273, (2012).
15. 黃惠良, 蕭錫鍊, 周明奇, 林堅楊, 江雨龍, 曾百亨, 李威儀, 李世昌, 林唯芳, "太陽電池", 五南出版社, (2008).
16. O. Edenhofer, R. P. Madruga, and Y. Sokona, "Special Report on Renewable Energy Sources and Climate Change Mitigation", IPCC, (2011).
17. B. R. Singh, "Global Warming - Impacts and Future Perspective", Intech, (2012).
18. J. Burschk, N. Pellet, S. J. Moon, R. H. Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, "Sequential deposition as a route to high-performance perovskite-sensitized solar cells", Nature, vol. 499, pp. 316-320, (2013).
19. Y. Jiao, F. Zhang, and S. Meng, "Dye Sensitized Solar Cells Principles and New Design", Intech, (2011).
20. M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel, "Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell", J. Phys. Chem. B, vol. 107, pp. 8981-8987, (2003).
21. 楊明輝, "透明導電膜材料與成膜技術的新發展", 工業材料雜誌, vol. 189, pp. 161-174, (2000).
22. 黃桂武, "軟性印製透明導電高分子材料技術發展", 光連雙月刊, vol. 102, (2012).
23. T. D. R. Inc, "ITO-replacement report", Touch Display Research Inc, (2014).
24. M. Grätzel, "Photoelectrochemical cells", Nature, vol. 414, pp. 338-344, (2001).
25. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, "Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%", Jpn. J. Appl. Phys., vol. 45, pp. 638-640, (2006).
26. J. Zhang, P. Zhou, J. Liub, and J. Yu, "New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2", Phys. Chem. Chem. Phys., vol. 16, pp. 20382-20386, (2014).
27. N. G. Park, J. v. d. Lagemaat, and A. J. Frank, "Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells", J. Phys. Chem. B, vol. 104, pp. 8989-8994, (2000).
28. D. S. Yuan, and W. K. Jia, "Optimum Nanoporous TiO2 Film and Its Application to Dye-sensitized Solar Cells", Chin. Phys. Lett., vol. 20, pp. 953-955, (2003).
29. L. M. Goncalves, V. d. Z. Bermudez, H. A. Ribeiro, and A. M. Mendes, "Dye-sensitized solar cells: A safe bet for the future", Energy Environ. Sci., vol. 1, pp. 655-667, (2008).
30. K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. I. Nakamura, and K. Maruta, "High-performance carbon counter electrode for dye-sensitized solar cells", Solar Energy Materials & Solar Cells, vol. 79, pp. 459-469, (2003).
31. Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, and Q. Meng, "Application of carbon materials as counter electrodes of dye-sensitized solar cells", Electrochemistry Communications, vol. 9, pp. 596-598, (2007).
32. T. Ma, X. Fang, M. Akiyama, K. Inoue, H. Noma, and E. Abe, "Properties of several types of novel counter electrodes for dye-sensitized solar cells", Journal of Electroanalytical Chemistry, vol. 574, pp. 77-83, (2004).
33. J. T. Lin, P. C. Chen, Y. S. Yen, Y. C. Hsu, H. H. Chou, and M. C. P. Yeh, "Organic Dyes Containing Furan Moiety for High-Performance Dye-Sensitized Solar Cells", Org. Lett., vol. 11, pp. 97-100, (2009).
34. S. Ito, S. M. Zakeeruddin, R. H. Baker, P. Liska, R. Charvet, P. Comet, M. K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, "High-Efficiency Organic-Dye-Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness", Advanced Materials, vol. 18, pp. 1202-1205, (2006).
35. Y. Lee, S. R. Jang, R. Vittal, and K. J. Kim, "Dinuclear Ru(II) dyes for improved performance of dye-sensitized TiO2 solar cells", New Journal of Chemistry, vol. 31, pp. 2120-2126, (2007).
36. M. K. Nazeeruddin, S. M. Zakeeruddin, R. H. Baker, M. Jirousek, P. Liska, N. V. V. Shklover, C.H. Fischer, and M. Grätzel, "Acid-Base Equilibria of (2,2′-Bipyridyl-4,4′-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania", Inorganic Chemistry, vol. 38, pp. 6298-6305, (1999).
37. A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, "Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency", Science, vol. 334, pp. 629-633, (2011).
38. J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, "Electrolytes in Dye-Sensitized Solar Cells", Chem. Rev., vol. 115, pp. 2136-2173, (2015).
39. P. Wang, S. M. Zakeeruddin, I. Exnarb, and M. Grätzel, "High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte", Chem Commun, pp. 2972-2973, (2002).
40. M. Pagliaro, R. Ciriminna, and G. Palmisano, "Flexible Solar Cells", Chem . Sus. Chem, vol. 1, pp. 880-891, (2008).
41. A. H. C. Neto, F. Guinea, N. M. R. Peres, et al. "The electronic properties graphene", Rev. Mod. Phys., vol. 81, pp. 109-162, (2009).
42. K. S. Novoselov, E. McCann, S. V. Morozov, K. S. Novoselov, and A. K. Geim, "Unconventional quantum Hall effect and Berry's phase of 2pi in bilayer graphene", Nature phys., vol. 2, pp. 177-180, (2006).
43. A. Trouve, and T. E. Minnich, "Thermal Properties Database", NCJRS, (2012).
44. K. I. Bolotina, K. J. Sikesb, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene", Solid State Communications, vol. 146, pp. 351-355, (2008).
45. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, "Graphene-Based Ultracapacitors", Nano Lett, vol. 8, pp. 3498-3502, (2008).
46. S. H. Lee, D. H. Lee, W. J. Lee, and S. O. Kim, "Tailored Assembly of Carbon Nanotubes and Graphene", Advanced Functional Materials, vol. 21, pp. 1338-1354, (2011).
47. V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman, "Liquid Exfoliation of Layered Materials", Science, vol. 340, pp. 1226419, (2013).
48. Y. Hernandez, V. Nicolosi, M. Lotya et al., "High-yield production of graphene by liquid-phase exfoliation of graphite", NatureNanotechnology, vol. 3, pp. 563-568, (2008).
49. R. Garg, N. K. Dutta, and N. R. Choudhury, "Work Function Engineering of Graphene", Nanomaterials, vol. 4, pp. 267-300, (2014).
50. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science, vol. 306, pp. 666-669, (2004).
51. Q. Yu, J. Lian, S. Siriponglert, et al. "Graphene segregated on Ni surfaces and transferred to insulators", Applied Physics Letters, vol. 93, pp. 113103, (2008).
52. X. Li, W. Cai, J. An, H. Li, Y. P. Chen, and S. S. Pei, "Large-Area Synthesis of High-Qualityand Uniform Graphene Films on Copper Foils", Science, vol. 324, pp. 1312-1315, (2009).
53. C. Mattevi, H. Kima, and M. Chhowalla, "A review of chemical vapour deposition of graphene on copper", Journal of Materials Chemistry, vol. 21, pp. 3324-3334, (2011).
54. I. Ahmad, U. Khanb, and Y. K. Gun'ko, "Graphene, carbon nanotube and ionic liquid mixtures: towards new quasi-solid state electrolytes for dye sensitised solar cells", J. Mater. Chem., vol. 21, pp. 16990-16996, (2011).
55. Y. B. Tang, C. S. Lee, J. Xu et al., "Incorporation of Graphenes in Nanostructured TiO2 Films via Molecular Grafting for Dye-Sensitized Solar Cell Application", ACSnano, vol. 4, pp. 3482-3488, (2010).
56. K. S. Lee, Y. Lee, J. Y. Lee, J. H. Ahn, and J. H. Park, "Flexible and Platinum-Free Dye-Sensitized Solar Cells with Conducting-Polymer-Coated Graphene Counter Electrodes", Chem. Sus. Chem, vol. 5, pp. 379-382, (2012).
57. H. Bi, H. Cui, T. Lin, and, F. Huang, "Graphene wrapped copper-nickel nanospheres on highly conductive graphene film for use as counter electrodes of dye-sensitized solar cells", Carbon, vol. 91, pp. 153-160, (2015).
58. G. Yue, J. Wu, Y. Xiao, M. Huang, J. Lin, L. Fan, and Z. Lan, "Platinum/graphene hybrid film as a counter electrode for dye-sensitized solar cells", Electrochimica Acta, vol. 92, pp. 64-70, (2013).
59. Y. Zhang, H. Li, L. Kuo, P. Dong, and F. Yan, "Recent Applications of Graphene in Dye-sensitized Solar Cells", Current Opinion in Colloid & Interface Science, vol. 20, pp. 406-415, (2015).
60. G. H. Han, F. Gunes, J. J. Bae, E. S. Kim, S. J. Chae, H. J. Shin, J. Y. Choi, D. Pribat, and Y. H. Lee, "Influence of Copper Morphology in Forming Nucleation Seeds for Graphene Growth", Nano Lett, vol. 11, pp. 4144-4148, (2011).
61. S. C. Chang, J. M. Shieh, C. C. Huang, B. T. Dai, Y. H. Li, and M. S. Feng, "Microleveling mechanisms and applications of electropolishing on planarization of copper metallization", American Vacuum Society, vol. 20, pp. 2149-2153, (2002).
62. I. Vlassiouk, P. Fulvio, H. Meyer, N. Lavrik, S. Dai, P. Datskos, and S. Smirnov, "Large scale atmospheric pressure chemical vapor deposition of graphene", Carbon, vol. 54, pp. 58-67, (2013).
63. Y. Shaoa, S. Zhanga, C. Wanga, Z. Niea, J. Liua, Y. Wanga, and Y. Lin, "Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction", Journal of Power Sources, vol. 195, pp. 4600-4605, (2010).