研究生: |
吳美瑩 |
---|---|
論文名稱: |
粒子發展史融入自然與生活科技教學對國中學生學習成就及科學本質觀影響之研究 |
指導教授: |
方泰山
Fang, Tai-Shan |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2004 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 119 |
中文關鍵詞: | 粒子發展史 、科學史 、教學模式 、學習成就 、科學本質 、迷思概念 |
英文關鍵詞: | the history of particles, science history, teaching model, learning achievement, the nature of science, misconceptions |
論文種類: | 學術論文 |
相關次數: | 點閱:162 下載:64 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採準實驗研究法,旨在運用粒子發展史融入自然與生活科技教學,探討科學史融入教學模式對學生學習成就及科學本質觀的影響。研究者採用歷史個案研究方式設計教材,並採行分組討論式的合作學習方法設計教學模式,以台北市某國中二年級145名學生為實驗對象,分為實驗組(71人)及控制組(74人),進行十堂課的教學實驗。本研究除藉學習成就測驗、了解科學本質量表(UNOS)前後測成績,探討粒子發展史融入教學模式對學生學習成就及對科學本質了解的影響外,並分析不同性別、不同程度學生在學習成就及對科學本質了解上的差異,以及從學生的活動學習單內容及學習感受問卷回饋意見進行質與量的分析。研究結果發現如下:
一、粒子發展史融入教學模式能促進學生之學習成就。
就性別而言,實驗組女生學習成就的後測表現沒有顯著優於男生;就程度而言,實驗組高分組及中分組的學習成就後測表現顯著高於低分組,也就是科學史融入教學模式對高分組及中分組的影響顯著高於低分組。
二、粒子發展史融入教學模式未能促進學生對科學本質的了解。
就性別而言,實驗組女生了解科學本質的後測表現沒有顯著優於男生;就程度而言,實驗組高分組、中分組和低分組的了解科學本質後測表現沒有顯著差異,也就是科學史融入教學均未能促進各組學生對科學本質了解的提升。
三、大部分學生認為粒子發展史融入教學模式對他們有幫助。
1. 學生對實驗教學之感受:一是分組討論改變學習型態;二是上課方式變的新鮮、特別;三是科學史教學模式讓教材更易了解。學生對實驗教材之感受:一是科學史教材內容深入、觀念較易理解;二是科學史教材有重點整理;三是科學史教材內容活潑;四是科學史教材重視科學概念發展過程。
2. 有63﹪的學生宣稱實驗教學引起他們的學習興趣。實驗教學引起學習興趣的理由:一是喜歡分組討論;二是科學史教材內容生動;三是教學有助思考。
3. 有 94﹪的學生宣稱實驗教學幫助他們了解科學本質。科學史融入教學模式促進學生在科學知識本質的了解最多,科學方法與科學事業本質的了解很少。
4. 有82﹪的學生宣稱實驗教學改善他們的迷思概念。
5. 實驗教學對於學生的最大幫助:一是提高學習成就;二是增進反省思考;三是了解科學史。
四、學生的迷思概念與科學史上的科學概念相比較,發現學生在粒子相關的某些概念和古代科學家的想法相似。
This research adopts quasi-experimental research method. It aims to integrate the history of particles to the teaching of Science and Technology to investigate the impact of the integrated teaching model of the science history on the students’ learning achievement and their view of the nature of science. The researcher used historical case-study approach to design the teaching materials and adopted group discussion of cooperative learning method as the teaching model. The subjects were 145 8th graders in a junior high school in Taipei, 71 in the experiment group and 74 in the control group. The students in the experiment group received ten classes of teaching experiment. This research not only used pre- and post-test scores of learning achievement test and Understanding of the Nature of Science Scale (UNOS) investigate the impact of the integrated teaching model on the students’ learning achievement and their view of the nature of science but also analyzed the difference between different sexes and levels of students. It also underwent quality and quantity analysis on students’ worksheets and feedback questionnaire. The findings are as followed.
I.The integrated teaching model of the history of particles can facilitate students’ learning achievement.
As far as sexes are concerned, the girls’ learning achievement on posttest is not significantly higher than that of the boys’ in experiment group. As to different student levels, the learning achievements on posttest of the high-score and medium-score groups are significantly higher than that of the low-score group; that is, the impact of the integrated teaching model of science history on the high-score and medium-score groups are significantly higher that of the low-score group.
II.The integrated teaching model of the history of particles cannot increase students’ understanding of the nature of science.
As far as sexes are concerned, the girls’ understanding of the nature of science on posttest is not significantly higher than that of the boys’ in experiment group. As to different student levels, the understanding of the nature of science on posttest for the high-score and medium-score groups are not significantly different from that of the low-score group; that is, the impact of the integrated teaching model of science history cannot significantly facilitate the understanding of the nature of science of all groups of students.
III.Most students thought that the integrated teaching model of the history of particles was helpful for them.
1.The feelings students have toward experiment teaching: a) group discussion changed students’ learning style; b) classes became interesting and special; c) the new teaching model made the materials easier to understand.
The feelings students have toward experiment materials: a) the materials on science history are in-depth and easier to understand; b) there were a list of main points on science history; c) the materials on science history are snappy; d) the science history materials emphasized the development of scientific concepts.
2.63% of students declared that experiment teaching arouse their learning interests. The reasons are: a) students like group discussion; b) the materials on science history are lively; c) the teaching helped students to think.
3.94% of students declared that experiment teaching helped them understand the nature of science. The integrated teaching model of science history facilitated students’ understanding of the nature of scientific knowledge much better than that of scientific method and scientific enterprise.
4.82% of students declared that experiment teaching helped them improve their misconceptions.
5.The greatest help the experiment teaching has toward students are: a) enhance learning achievement; b) increase reflection; c) understand science history.
IV.Comparing students’ misconceptions and the scientific concepts in the science history, students’ concepts concerning particles are similar to some thoughts of ancient scientists.
壹、中文部分
丁美枝(民91)。不同教學媒體對國中學生學習「原子結構」之成效。國立台灣師範大學科學教育研究所碩士論文。
尹基勉(民88)。「原子結構」概念之建構式教學研究。國立台灣師範大學化學研究所碩士論文。
王德勝、朱天娥(民81)。化學五千年。台北:曉園出版社。
邱文寶譯(民92)。Paul Strathern原著。門得列夫之夢-從煉金術到週期表的誕生。台北:究竟出版社。
李玉貞(民89)。光學史融入教學對高中學生科學本質觀及光概念的改變之研究。國立高雄師範大學科學教育研究所碩士論文。
李吟、單文經(民86)。教學原理(第三版)。台北:遠流出版社。
巫俊明(民86)。歷史導向物理課程對學生科學本質的了解、科學態度、及物理學科成績之影響。物理教育,1(2),64-84。
邱美虹、高淑芬(民88)。類比對應對學生建構“原子結構”心智表徵之影響。師大學報,44(1&2),31-59。
沈慧君、郭奕玲(民83)。物理通史。新竹:凡異出版社。
范岱年譯(民85)。W. Heisenberg原著。物理學與哲學-現代科學中的革命。新竹:凡異出版社。
林陳涌(民85)。「了解科學本質量表」之發展與效化。科學教育學刊,4(1),31-58。
林陳涌(民88)。科學本質在科學教育上的研究與實施。台北:國立台灣師範大學生物學系。
林煥祥(民89a)。科學史融入理化的多元化教學。小班教學通訊國中篇,17。
林煥祥(民89b)。融入科學史的多元化教學,菁莪季刊,45。
林寶英(民87)。科學史取向的大學生物通識教育之研究。國立高雄師範大學科學教育研究所碩士論文。
侯志洋、許良榮(民90)。國小自然科教師對科學史教學的態度之初探研究。科學教育月刊,242,
施怡君(民89)。「原子結構與週期表」超文系統之開發與學習成效研究。國立台灣師範大學化學研究所碩士論文。
洪振方(民83)。從孔恩的異例認知與論證探討科學知識的重建。國立台灣師範大學科學教育研究所博士論文(未出版)。
洪振方(民86)。科學史融入科學教學之探討。高雄師大學報,8,233-246。
洪振方(民87)。科學教學的另類選擇:融入科學史的教學。屏師科學教育,7,2-10。
翁秀玉、段曉林(民86)。科學本質在科學教育上的啟示與作法。科學教育月刊,201,2-15。
師明睿譯(民90)。Paul G.Hewitt原著。觀念物理Ⅲ、Ⅴ。台北:天下遠見出版社。
陳文靜(民89)。原子與電子發展史融入教學對高一學生科學本質觀改變之研究。國立高雄師範大學科學教育研究所碩士論文。
國立編譯館(民88)。國中理化第二冊。台北:國立編譯館。
許良榮(民87)。科學史課文對於科學理論之閱讀學習的效果。中師數理學報,2(1),111-141。
許良榮、李田英(民84)。科學史在科學教學的角色與功能。科學教育月刊,179,15-27。
陳和玉(民88)。科學史融入高中物理之教學方法研究。國立高雄師範大學物理研究所碩士論文。
教育部(民90)。國民中小學九年一貫課程暫行綱要:自然與生活科技學習領域。台北:教育部。
郭重吉(民81a)。從科學哲學觀點的改變探討科學教育的過去與未來。彰化師大學報,3,532-555。
郭重吉(民81b)。從建構主義的觀點探討中小學數理教學的改進。科學發展月刊,20(5),548-568。
郭重吉(民90)。漫談建構主義在數理教學上的應用。建構與教學,16。
康軒出版社(民93)。自然與生活科技2下。台北:康軒出版社。
陳淑媛(民86)。融入科學史於高中基礎理化教學之行動研究。國立高雄師範大學科學教育研究所碩士論文。
陳道達譯(民87)。Keith J. Laidler原著。物理化學的世界。台北:國立編譯館。
陳廣勇(民90)。國小學童對物質微小粒子的概念與迷思概念研究。台中師範學院自然科學教育學系碩士論文。
粱衡(民86)。數理化通俗演藝上、下冊。新竹:理藝出版社。
黃寶蓉(民89)。科學本質在教與學的意涵之研究。國立高雄師範大學科學教育研究所碩士論文。
程樹德、傅大為、王道環、錢永祥譯(民80)。Thomas Kuhn原著。科學革命的結構。台北:遠流出版社。
傅麗玉(民85)。科學史與台灣中等科學教育之整合-問題與建議。載於國立台灣師範大學中等教育輔導委員會主編:化學教育面面觀。台北:國立台灣師範大學中等教育輔導委員會。165-193。
傅麗玉(民88a)。科學家的「不當行為」故事在中等科學教育的價值與意義。科學教育學刊,7(3),281-298。
傅麗玉(民88b)。國小教科書中科學史之呈現方式:以七個地區之國小自然科學教科書為例。載於張嘉鳳與劉君燦主編:第五屆科學史研討會論文集。台北:中央研究院國際科學史委員會。181-233。
楊永華、張麗英、羅世焜、何金錫(民88)。高中基礎化學。台北:三民書局。
楊思偉(民88)。國民中小學九年一貫課程基本能力實踐策略。台北:國立台灣師範大學教育研究中心。
趙匡華(民87)。化學通史。新竹:凡異出版社。
鄭秀如(民86)。科學史對學生科學知識本質觀及學習成就之影響。國立高雄師範大學科學教育研究所碩士論文。
劉宗寅(民92)。影響世界的化學大發現。台北:專業文化出版社。
劉俊庚(民91)。迷失概念與概念改變教學策略之文獻分析-以概念構圖和後設分析模式探討其意涵與影響。國立台灣師範大學科學教育研究所碩士論文。
蘭宜申譯(民87)。Leonard De Vries原著。原子科學史。台北:藝文印書館。
貳、英文部分
Abisdris, G., & Casuga, A. (2001). Atomic poetry: using poetry to teach Rutherford’s discovery of the nucleus. Science Teacher, 68(6), 58-62.
Aikenhead, G. S., & Duffee, L. (1992). Curriculum change, student evaluation, and teacher practical knowledge. Science Education, 76(5), 439-506.
Andersson, B. (1990). Pupil’s conceptions of matter and its transformation (age 12-16). Studies in Science Education, 18, 53-85.
Andersson, B., & Renstrom, L. (1983). How Swedish pupils, age 12-15, explain the copper piple problem. University of Gothenburg, Sweden.
Bar, V., & Zinn, B. (1998). Similar frameworks of action-at-a-distance: Early scientists’ and pupils’ ideas. Science and Education, 7, 471-491.
Brickhouse, N. W. (1990). Teachers beliefs about the nature of science and their relationship to classroom practice. Journal of Teacher Education, 41(3), 53-62.
Brush, S. G. (1989). History of science and science education. Interchange, 20(2),69-70.
Carroll, F. A., & Seeman, J. I. (2001). Placing science into its human context: using scientific autobiography to teach chemistry. Journal of Chemical Education, 78(12), 1618-1622.
Clement, J. (1983). A conceptual model discussed by Galileo and used intuitively by physics students. In D. Gentner & A. Stevens (eds.), Mental Model (325-340). Hillsdale, N.J.: L. Erlbaum. Associates.
De Berg, K. C. (2003). The development of the theory of electrolytic dissociation: a case study of a scientific controversy and the changing nature of chemistry. Science and Education, 12(4), 397-419.
Driver, R., & Easley, J. (1978). Pupils and paradigms: a review of literature related to Concept development in adolescent science students. Studies in Science Education, 5, 61-84.
Dybowski, C. (2001). A course in the history of physical chemistry with an emphasis on writing. Journal of Chemical Education, 78(12), 1623-1625.
Garnett, P. J., Garnett, P. J., & Hackling, M. W. (1995). Students’ alternative conceptions in chemistry: A review of research and implications for teaching and learning. Studies in Science Education, 25, 69-95.
Griffiths, A. K., & Preston, K. R. (1989). An investigation of grade 12 students’ misconceptions relating to fundamental characteristics of molecules and atoms. ERIC: ED304347.
Griffiths, A. K., & Preston, K. R. (1992). Grade-12 students’ misconceptions relating to fundamental characteristics of atoms and molecules, Journal of Research in Science Teaching, 29(6), 611-628.
Harrison, A., & Treagust, D. (1996). Secondary students’ mental models of atoms and molecules: Implications for teaching chemistry. Science Education, 80(5), 509-534.
Hottecke, D.(2000). How and what can we learn from replicating historical experiments? A case study. Science and Education, 9(4), 343-362.
Irwin, A. R. (2000). Historical case studies: teaching the nature of science in context. Science Education, 84(1), 5-26.
Jenkin, E. (1989). Why the history of science? In M. Shortland & A. Warwick (eds.), Teaching the history of science (19-29). Oxford, UK; New York, USA: The British Society for the History of Science: B. Blackwell.
Johnson, P. (1998a). Progression in children’s understanding of a “basic” particle theory: a longitudinal study. International Journal of Science Education, 20(4), 393-412.
Jones, R. (1989). The historiography of science: retrospect and future challenge. In M. Shortland & A. Warwick (eds.), Teaching the history of science (80-99). Oxford, UK; New York, USA: The British Society for the History of Science: B. Blackwell.
Jones, R., & Zucker, A. (2000). Is science really value free? Science Teacher, 67(1), 38.
Klopfer, L. E., & Watson, F. G. (1957). Historical materials and high school science teaching. The Science Teacher, October 264-265; 292-293.
Lee, O., Eichinger, D. C., Anderson, C. W., Berkheime, G. D., & Blakeslee, T. D. (1993). Changing middle school students’ conceptions of matter and molecules. Journal of Research in Science Teaching, 30(2), 249-270.
Lin, H. (1998). The effectiveness of teaching chemistry through the history of science, Chemical Education Research, 75(10), 1324-1330.
Matthews, M. R. (1994). Science Teaching: The Role of History and Philosophy of Science. New York: Routledge.
Lin, H., & Chen, C. (2002). Journal of Research in Science Teaching, 39(9), 773-792.
Lin, H., Hung, J., & Hung, S. (2002). Using the history of science to promote students’ problem-solving ability. International Journal of Science Education, 24(5), 453-464.
McCloskey, M. (1983). Naïve theories of motion. In D. Gentner & A. Stevens (eds.), Mental Model (299-324). Hillsdale, N.J.: L. Erlbaum. Associates.
McDonald, D. (1989). Teaching science for understanding: Implications of spontaneous concepts and the history of science. ERIC: ED314251.
Monk, M., & Osborne, J. (1997). Placing the history and philosophy of science on the curriculum: A model for the development of pedagogy, Science Education, 81(4), 405-424.
Nakhlenh, M. B., & Samarapungavan, A. (1999). Elementary school children’s beliefs about matter. Journal of Research in Science Teaching, 36(7), 777-805.
Niaz, M. (1998). From cathode rays to alpha particles to quantum of action: A reconstruction of structure of the atom and its implications for chemistry textbooks, Science Education, 82(5), 527-552.
Niaz, M. (2000a). Gases as idealized lattices: a rational reconstruction of students’ understanding of the behavior of gases. Science and Education, 9(3), 279-287.
Niaz, M. (2000b). The oil drop experiment: a rational reconstruction of Millikan-Ehrenhaft controversy and its implications for chemistry textbooks. Journal of Research in Science Teaching, 37(5), 480-508.
Niaz, M. (2001). A rational reconstruction of the origin of the covalent bond and its implications for general chemistry textbooks. International Journal of Science Education, 23(6), 623-641.
Niaz, M., Aguilera, D., Maza, A., & Liendo, G. (2002). Arguments, contradictions, resistances, and conceptual change in students’ understanding of atomic structure. Science Education, 86(4), 505-525.
Niaz, M., & Rodriguez, M. A. (2002).Improving learning by discussing controversies in 20th century physics. Physics Education, 37(1), 59-63.
Nicoll, G. (2001). A report of undergraduates’ bonding misconceptions. International Journal of Science Education, 23(7), 707-730.
Nicoll, G. (2003). A qualitative investigation of undergraduate chemistry students’ macroscopic interpretations of the submicroscopic structure of molecules, Chemical Education Research, 80(2), 205-213.
Novick, S., & Nussbaum, J. (1978). Junior high school pupil’s understanding of the particulate nature of matter: an interview study. Science Education, 62(3), 273-281.
Novick, S., & Nussbaum, J. (1981). Pupil’s understanding of the particulate nature of matter: A cross-age study. Science Education, 65(2), 187-196.
Nussbaum, J. (1983). Classroom conceptual changes: The lesson to be learned from the history of science. In H. Hlem & J. D. Novak (eds.), Misconceptions in Science and Mathematics (272-281). Cornell University, Department of Education.
Osborne, R., & Freyberg, P. (1985). Assumption about teaching and learning. In R. Osborne & P. Freyberg (eds.), Learning in Science: The Implications of Children’s Science. Auckland, New Zealand; Portsmouth N. H.: Heinemann.
Pauling, L. (1983). Throwing the book at elementary chemistry. The Science Teacher, 50, 23-29.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change, Science Education, 66(2), 211-228.
Pozo, R. M. D. (2001). Prospective teacher’s ideas about the relationships conceptions describing the composition of matter. International Journal of Science Education, 23(4), 353-371.
Sanchez, L. (1989). On the implicit use of history in science education. In D. E. Herget (ed.), The History and Philosophy of Science in Science Teaching. Proceedings of the first international conference, 306-312. Tallahassee: Florida State University.
Schecker, H. P. (1992). The paradigmatic change in mechanics: Implication of historical processes for physics education. Science and Education, 1(1) , 71-76.
Shortland M., & Warwick A. (eds.) (1989). Teaching the history of science. Oxford, UK; New York, USA: The British Society for the History of Science: B. Blackwell.
Solomon, J., Duveen, I., Scot, L., & McCarthy, S. (1992). Teaching about the nature of science through history: Action research in the classroom. Journal of Research in Science Teaching, 29(4), 409-421.
Stepans, J. (1991). Developmental patterns in student’s understanding of physics concepts. In S. M. Glynn, R. H. Yeany & B. K. Britton (eds.), The Psychology of Learning Science (89-115). Hillsdale, NJ: Lawrence Erlbaum Associates.
Talbot, C. (2000). Ideas and evidence in science. School Science Review, 82(298), 13-22.
Wandersee, J. H. (1986). Can the history of science help science educators anticipate student’s misconceptions? Journal of Research in Science Teaching, 23(7), 581-597.