研究生: |
王一智 Wang, Yi-Chih |
---|---|
論文名稱: |
超導材料銣鎢青銅礦(RbxWO3, 0.17 ≤ x ≤ 0.33)之x光吸收能譜研究 X-ray absorption spectroscopy study of superconducting rubidium tungsten bronze (RbxWO3, 0.17 ≤ x ≤ 0.33) |
指導教授: |
劉祥麟
Liu, Hsiang-Lin 吳茂昆 Wu, Mau-Kuen |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 銣鎢青銅礦 、超導 、晶格場分裂 、x光繞射 、x光吸收能譜 |
英文關鍵詞: | rubidium tungsten bronze, superconductivity, crystal field splitting, x-ray diffraction, x-ray absorption spectroscopy |
論文種類: | 學術論文 |
相關次數: | 點閱:163 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,超導材料銣鎢青銅礦(RbxWO3)引起科學家們的興趣,歸因其複雜的結構變化,導致不同程度的電子-聲子交互作用,連結超導相變溫度的改變。X光繞射能譜顯示銣鎢青銅礦為六角晶相結構,但在銣含量較少(x ≤ 0.23)的情況下,其出現混合晶相與六角晶相共存態
。其次,x光吸收近邊結構能譜顯現鎢的5d軌域受到八面體對稱(Oh)的影響,分裂成eg與t2g簡併態,其分裂能與t2g簡併態的半高寬在銣含量0.23與0.27時出現反曲點,這意味著鎢氧八面體隨掺雜銣含量的多寡,展現不同程度的扭曲狀態,呼應超導相變溫度的變化趨勢。再者,延伸x光吸收精細結構能譜指出鎢氧八面體受到摻雜銣的影響,中心鎢原子有位移的現象產生。綜上所述,我們認為摻雜不同含量的銣,造成鎢氧八面體的局部扭曲,調制鎢5d軌域之eg與t2g簡併態電子結構,進而影響超導相變溫度的變化。
Rubidium tungsten bronzes (RbxWO3, 0.17 ≤ x ≤ 0.33) have recently attracted much attention due to their complex structural phase transitions, strong electron-phonon coupling, and intriguing superconducting properties. X-ray powder diffraction patterns show hexagonal tungsten bronze (HTB) phase in x ≥ 0.23 samples. The coexistence of intergrowth tungsten bronze (n-ITB, n = 2, 3) and HTB phases are observed in x < 0.23 samples. Furthermore, x-ray absorption near-edge structure spectra show that the octahedral splitting energy of eg and t2g states in tungsten 5d orbital and band width of t2g states exhibit two inflection points in x = 0.23 and 0.27 samples, indicating that WO6 octahedra undertake different degrees of local distortions. Additionally, x-ray extend absorption fine structure spectra show the distortion occurs at x = 0.23 due to the off-center displacement of tungsten ion. All of these observables suggest that rubidium doping induces the local lattice distortion of the WO6 octahedra, leading to the modification of the electronic structures of eg and t2g states in tungsten 5d orbital, thereby accounting for the characteristic changes of superconducting transition temperature of these materials.
1. H. K. Onnes, “The resistance of pure mercury at helium
temperatures”, Commun. Phys. Lab. Univ. Leiden 12, 120
(1911).
2. Charles P. Poole Jr., Horacio A. Farach, Richard J.
Creswick, and Ruslan Prozorov, “Superconductivity”, 2nd
ed, Academic Press, 2007.
3. Ronald J. Cohn, “Record superconductor at 22.3 K”,
Physics Today 26, 17 (1973).
4. J. G. Bednorz and K. A. Muller, “Possible high Tc
superconductivity in the Ba-La-Cu-O system”, Z. Phys. B:
Condens. Matter 64, 189 (1986).
5. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L.
Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu,
“Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O
compound system at ambient pressure”, Phys. Rev. Lett.
58, 908 (1987).
6. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory
of superconductivity”, Phys. Rev. 108, 1175 (1957).
7. Elbio Dagotto, “Correlated electrons in high-temperature
superconductors”, Rev. Mod. Phys. 66, 763 (1994).
8. J. Orenstein and A. J. Millis, “Advances in the physics
of high-temperature superconductivity”, Science 288, 468
(2000).
9. Enric Canadell and Myung Hwan. Whangbo, “Conceptual
aspects of structure-property correlations and electronic
instabilities, with applications to low-dimensional
transition-metal oxides”, Chem. Rev. 91, 965 (1991).
10. Robert E. Thorne, “Charge density wave conductors”,
Physics Today 49, 42 (1996).
11. G. Grüner, “The dynamics of charge-density waves”, Rev.
Mod. Phys. 60, 1129 (1988).
12. Paolo G. Radaelli, “Orbital ordering in transition-metal
spinels”, New J. Phys. 7, 53 (2005).
13. Takashi Hotta, “Orbital ordering phenomena in d- and f-
electron systems”, Rep. Prog. Phys. 69, 2061 (2006).
14. Y. Tokura and N. Nagaosa, “Orbital physics in
transition-metal oxides”, Science 288, 21 (2000).
15. Steven S. Zumdahl and Susan A. Zumdahl, “Chemistry”, 7th
ed, Houghton Mifflin, 2007.
16. J. Coey, “Magnetism and Magnetic Materials”, Cambridge,
2009.
17. John B. Goodenough, “Magnetism and the Chemical Bond”,
Wiley, 1963.
18. K. L. Ngai and Richard Sliberglitt, “Effect of lattice
instability on superconductivity in sodium tungsten
bronze”, Phys. Rev. B 13, 1032 (1976).
19. L. H. Cadell, R. C. Morris, and W. G. Moulton, “Normal
and superconducting properties of KxWO3”, Phys. Rev. B
23, 2219 (1981).
20. R. K. Stanley, R. C. Morris, and W. G. Moulton,
“Conduction properties of the hexagonal tungsten bronze,
RbxWO3”, Phys. Rev. B 20, 1903 (1979).
21. M. R. Skokan, W. G. Moulton, and R. C. Morris, “Normal
and superconducting properties of CsxWO3”, Phys. Rev. B
20, 3670 (1979).
22. A. Garg, J. A. Leake, and Z. H. Barber, “Epitaxial
growth of WO3 films on SrTiO3 and sapphire”, J. Phys. D:
Appl. Phys. 33, 1048 (2000).
23. Shinichi Komaba, Naoaki Kumagai, Keiko Kato, and Hitoshi
Yashiro, “Hydrothermal synthesis of hexagonal tungsten
trioxide from Li2WO4 solution and electrochemical
lithium intercalation into the oxide”, Solid State
Ionics 135, 193 (2000).
24. B. Gerand, G. Nowogrocki, and M. Figlarz, “A new
tungsten trioxide hydrate, WO3•1/3H2O : preparation,
characterization, and crystal-ographic study”, J. Solid
State Chem. 38, 312 (1981).
25. B. Gerand, G. Nowogrocki, J. Guenot, and M. Figlarz,
“Structure study of a new hexagonal form of tungsten
trioxide”, J. Solid State Chem. 29, 429 (1979).
26. Alexandru Enesca, Anca Duta, and Joop Schoonman, “Study
of photoactivity of tungsten trioxide (WO3) for water
splitting”, Thin Solid Films 515, 6371 (2007).
27. Kazuhiko Maeda, “Photocatalytic water splitting using
semiconductor particles: History and recent
developments”, J. Photochem. Photobiol. C 12, 237
(2011).
28. Furio Corà, Atul Patel, Nicholas M. Harrison, Roberto
Dovesi, and C. Richard A. Catlow, “An ab Initio Hartree-
Fock study of the cubic and tetragonal phases of bulk
tungsten trioxide”, J. Am. Chem. Soc. 118, 12174 (1996).
29. Andrew D. Walkingshaw, Nicola A. Spaldin, and Emilio
Artacho, “Density-functional study of charge doping in
WO3”, Phys. Rev. B 70, 165110 (2004).
30. Ch. J. Raub, A. R. Sweedler, M. A. Jensen, S. Broadston,
and B. T. Matthiasg, “Superconductivity of sodium
tungsten bronze”, Phys. Rev. Lett. 13, 746 (1964).
31. R. Sweedler, C. J. Rand, and B. T. Matthias,
“Superconductivity of the alkali tungsten bronze”, Phys.
Lett. 15, 108 (1965).
32. R. Brusetti, P. Haen, and J. Marcus, “Concentration
dependence of superconductivity and the order-disorder
transition in the hexagonal rubidium tungsten bronze
RbxWO3: Interfacial and bulk properties”, Phys. Rev. B
65, 144528 (2002).
33. D. C. Ling, Y. C. Shao, J. W. Chiou, W. F. Pong, S. H.
Wu, Y. Y. Chen, and F. Z. Chien, “The effect of local
lattice distortion on physical properties of hexagonal
rubidium tungsten bronze Rb0.23WOy”, J. Phys. : Conf.
Ser. 150, 052141 (2009).
34. M. Sato, B. H. Grier, and G. Shirane, “Evidence of
structural phase transitions in superconducting RbxWO3”,
Phys. Rev. B 25, 510 (1982).
35. R. Brusetti, P. Bordet, and J. Bossy, “Superconductivity
in the tungsten bronze RbxWO3 (0.20 ≤ x ≤ 0.33) in
connection with its structure, electronic density of
states, and phonon density of states”, Phys. Rev. B 76,
174511 (2007).
36. D. M. Sagar, D. Fausti, S. van Smaalen, and P. H. M. van
Loosdrecht, “Raman signatures of charge ordering in
K0.3WO3”, Phys. Rev. B 81, 045124 (2010).
37. Kwang-Soon Lee, Dong-Kyun Seo, and Myung-Hwan Whangbo,
“Electronic band structure study of the anomalous
electrical and superconducting properties of hexagonal
alkali tungsten bronzes AxWO3 (A = K, Rb, Cs)”, J. Am.
Chem. Soc. 119, 4043 (1997).
38. “Physical property measurement system-hardware manual”,
Quantum Design, 2008.
39. “Magnetic property measurement system-SQUID VSM user's
manual” Quantum Design, 2009.
40. D. C. Koningsberger and R. Prins, “X-ray absorption:
principles, applications, techniques of EXAFS, SEXAFS
and XANES”, Wiley 1988.
41. Dale E. Sayers, Edward A. Stern, and Farrel W. Lytle,
“New technique for investigating noncrystalline
structures: fourier analysis of the extended x-ray
absorption fine structure”, Phys. Rev. Lett. 27, 1024
(1971).
42. 王其武、劉文漢著,X射線吸收精細結構及其應用,科學出版社,民國八十三
年五月。
43. 王健源、林玄哲、黃界閔編著,X光吸收近邊緣結構(XANES)與延伸x光吸收
近邊緣細微結構(EXAFS)分析法,國立臺灣大學化學系學生書面報告,民國
八十九年十二月。
44. D. C. Koningsberger, B. L. Mojet, G. E. van Dorssena,
and D. E. Ramaker, “XAFS spectroscopy : fundamental
principles and data analysis”, Top. Catal. 10, 143
(2000).
45. Matthew Newville, “Fundamentals of XAFS”, University of
Chicago Press, 2004.
46. J. E. Penner Hahn, “X-ray absorption spectroscopy in
coordination chemistry”, Coord. Chem. Rev. 190, 1101
(1999).
47. 汪建民主編,材料分析,中國材料科學學會,民國八十七年二月。
48. 鄧勃、宁永成、劉密新著,儀器分析,清華大學出版社,民國八十年五月,第
一版。
49. C. S. Barrett and T. B. Massalski, “Structure of Metals,
Crystallographic Methods, Principles and Data”, 3rd ed,
New York, 1966.
50. N. D. Zakharov, P. Werner, I. P. Zibrov, V. P.
Filonenko, and M. Sundberg, “Intergrowth tungsten bronze
structures of PrxWO3, formed at 50 kbar: an HRTEM
study”, J. Solid State Chem. 147, 536 (1999).
51. C. Grenthe, M. Sundberg, V. P. Filonenko, and I. P.
Zibrov, “High-pressure tungsten bronzes, RExWO3 with RE
= La and Nd, studied by x-ray diffraction and electron
microscopy”, J. Solid State Chem. 154, 466 (2000).
52. 林建宏,淡江大學物理學系碩士論文,民國一百年一月。
53. J. Moscovici, A. Rougier, S. Laruelle, and A.
Michalowicz, “Apparent mismatch between extended x-ray
absorption fine structure and diffraction structures of
crystalline metastable WO3 phases”, J. Chem. Phys. 125,
124505 (2006).
54. M. Mączka, J. Hanuza, and A. Majchrowski, “Vibrational
properties of ferroelectric hexagonal tungsten bronzes
ABxW3−xO9, where A = K, Rb, Cs and B = Nb, Ta, Zr, Cr”,
J. Raman Spectrosc. 32, 929 (2001).
55. M. Mączka, J. Hanuza, and A. Waśkowska, “Vibrational
studies of alkali metal hexatungstates”, J. Raman
Spectrosc. 34, 432 (2003).