研究生: |
李姿儀 Li, Tzu-Yi |
---|---|
論文名稱: |
VR體驗式探究對學生學習成效和知識建構影響之研究 The Effect of Inquiry-Based Learning with Virtual Reality on Students‘ Learning Effectiveness and Knowledge Construction |
指導教授: |
張玉山
Chang, Yu-Shan |
學位類別: |
碩士 Master |
系所名稱: |
科技應用與人力資源發展學系 Department of Technology Application and Human Resource Development |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 190 |
中文關鍵詞: | 虛擬實境 、探究式教學 、體驗式教學 、學習成效 、知識建構 |
英文關鍵詞: | virtual reality, inquiry teaching, experiential teaching, learning effectiveness, knowledge construction |
DOI URL: | http://doi.org/10.6345/NTNU201900404 |
論文種類: | 學術論文 |
相關次數: | 點閱:496 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技日新月異,虛擬實境目前被應用於各領域當中,在教育上的應用亦嶄露頭角。體驗式學習是讓學生從體驗中獲得知識,生活科技的做中學,即是如此。探究式學習是以學習者為中心的教學方式,是讓學生主動發現問題、並擬出方案,提出解決方法,提升學生的操作技能及設計能力、創造力…等。
本研究目的為探討傳統教學法、體驗式探究教學、VR體驗式探究教學對國中一年級學生學習成效和知識建構之影響。本研究採用不同的教學方式進行實作教學,教學單元為遙控自走車設計與製作,包含電學、機構、設計等內容。採用準實驗研究法,使用不等組前後測的實驗設計,自變項為教學方式,共分成傳統教學法、體驗式探究教學、VR體驗式探究教學三種;依變項則是學習成效和知識建構,學習成效包含認知、情意、技能,知識建構則包含歷程。
本研究的主要結論如下:1.體驗式探究教學搭配VR設備能有效提升學生的學習成效,包含認知、情意及技能2. 體驗式探究教學方式可建構學生完整知識建構歷程。
With the rapid development of technology, virtual reality is currently being used in various fields as well as in education. Experiential learning is the way in which students acquire knowledge from real experiencing. In the same way, students learn technology by doing. Inquiry-based learning is a learner-centered teaching model that allows students to proactively identify problems, develop solutions, propose solutions, and improve students' operational skills, design skills, creativity, and so on.
The purpose of this study is to explore traditional teaching method, experiential inquiry teaching, VR experiential inquiry teaching on the learning outcomes and knowledge construction of first-year middle school students. The teaching unit named Remote Control Self-propelled Vehicle is used in this study. Main learning content includes electricity, mechanism, and design. The quasi-experimental research design is adapted.
The independent variable is the teaching mode, which is divided into three types: traditional teaching method, experiential inquiry teaching, and VR experiential inquiry teaching. The dependent variables are learning effectiveness and knowledge construction. Learning effectiveness includes domains of cognition, affection, and psychomotor. Additionally, knowledge construction includes learning processes.
The main conclusions of this study are as follows:1. Experiential inquiry teaching with VR equipment can effectively improve students' learning effectiveness, including cognition, affection and psychomotors. 2. Experiential inquiry teaching mode can help constructing students' knowledge construction process completely.
一、 中文部分
朱益賢(2008)。從社會環境成份探討學生的實作技能與科技創造力—透過
科技競賽策略。行政院國家科學委員會專題研究成果報告(NSC 95-
2511-S-003-021-MY3),未出版。
李大偉、張玉山、張育禎(2006)。企業體驗式的科技創造力教學設計實例。生活科技教育月刊,39(8),3-20。
吳心楷、宋曜廷、簡馨瑩(2010)。錄影分析在教育研究的應用。教育科學
研究期刊,55(4),1-37。
李明昆、洪振方(2012)。提升科學創造力的探究教學策略之實驗研究。科
學教育研究與發展季刊,65,49-74。
李松濤、林煥祥、洪振方(2010)。探究式教學對學童科學論證能力影響之
探究。科學教育學刊,18(3),177-203。
林生傳(1998)。建構主義的教學評析。課程與教學學刊,3(1),1-14。
林進材(2017)。班級經營。五南圖書出版股份有限公司。
邱美文(2010)。創造課堂學習新驚喜:互動討論教學在專題討論課程上之
應用。幼兒教保研究期刊,5,155-175。
徐正芳(2005)。體驗式教學訓練成效之因素探討(碩士論文)。國立中央大學,桃園市。
張玉山(2018)。虛擬實境應用對高中 STEAM 探究學習效果與創意表現的
影響-機構設計教學模組研究。科技部研究計畫(CM03-1229-11),未出
版。
張玉燕(1996)。建構導向的教學經營-以自然科為例。國教月刊,43(2),7-17。
張春興(2002)。教育心理學。臺北市:東華。
彭文松(2005)。認知風格、學習風格與思考風格之區辨研究(碩士論文)。國立新竹師範學院,新竹市。
黃富順(2001)。成人的經驗學習。成人教育,59,3-11。
楊秀停、王國華(2007)。實施引導式探究教學對於國小學童學習成效之影
響。科學教育學刊,15(4),439-459。
趙偉順、張玉山(2011)。經驗學習理論在生活科技課程的教學應用-以 「扭轉乾坤」曲柄玩具單元為例。生活科技教育月刊,44(6),1-21.
陳明鈺、歐陽誾(2017)。資訊科技融入 5E 探究教學對七年級學生生物科
學習成就與學習態度之影響-以 [血液循環系統] 為例。教育學誌,38,
125-176。
蔡清田(1998)。建構主義取向的課程設計。課程與教學,1(3),15-30。
二、 外文部分
Abdi, A. (2014). The effect of inquiry-based learning method on students'academic achievement in science course. Universal Journal of Educational Research, 2(1), 37-41.
Abdulwahed, M., & Nagy, Z. K. (2009). Applying Kolb's experiential learning cycle for laboratory education. Journal of Engineering Education, 98(3),283-294.
Aceytuno, M., & Barroso, M. (2015). The development of inquiry-based learning(IBL) methodology in undergraduate higher education. Proceedings of the Multidisciplinary Academic Conference, 1-8.
Andrini, V. S. (2016). The effectiveness of inquiry learning method to enhance students' learning outcome: A theoritical and empirical review. Journal of Education and Practice, 7(3), 38-42.
Association for Experiential Education (1995). AEE definition of experiential education .The AEE Horizon., 15(1), 21.
Association for Experiential Education (2014).What is experiential education?Retrieved from http://www.aee.org/
Basaǧa, H., Geban, Ö., & Tekkaya, C. (1994). The effect of the inquiry teaching method on biochemistry and science process skill achievements. Biochemical Education, 22(1), 29-32.
Bereiter, C. (2002). Education and mind in the knowledge age. New York: Routledge.
Bloom, B. S. (Ed.) (1956). Taxonomy of educational objectives: The classification of educational goals, Handbook I: Cognitive domain. New York, NY: Longman, Green.
Boud, D., & Miller, N. (Eds.). (1996). Working with experience: Animating learning. New York: Routledge.
Bryman, A., & Cramer, D. (1997). Quantitative data analysis with SPSS for Windows. London: Routledge.
Burdea, G. C., & Coiffet, P. (2003). Virtual reality technology (2nd ed., Vol. 1). New Jersey, NJ: John Wiley & Sons.
Caputo, F., Greco, A., D’Amato, E., Notaro, I., & Spada, S. (2018). On the use of virtual reality for a human-centered workplace design. Procedia Structural Integrity, 8, 297-308.
Chang, C., Chang, C. K., & Shih, J. L. (2016). Motivational strategies in a mobile inquiry-based language learning setting. System, 59, 100-115.
Carmines, E. G., & Zeller, R. A. (1979). Reliability and validity assessment. Beverly Hills, CA: Sage.
Cheng, P. H., Yang, Y. T. C., Chang, S. H. G., & Kuo, F. R. R. (2016). 5E mobile inquiry learning approach for enhancing learning motivation and scientific inquiry ability of university students. IEEE Transactions on Education, 59(2), 147-153.
Choque-Velasquez, J., Colasanti, R., Collan, J., Kinnunen, R., Jahromi, B. R., & Hernesniemi, J. (2018). Virtual reality glasses and “eye-hands blind technique” for microsurgical training in neurosurgery. World
Neurosurgery, 112, 126-130.
Crawford, B. A. (2000). Embracing the essence of inquiry: New roles of science teacher. Journal of Research in Science Teaching, 37(9), 916-937.
Dale, E. (1969). Audiovisual methods in teaching. NY: Dryden Press.
Dewey, J. (1938). Experience and education. New York: Simon & Schuster.
De Klerk, R., Duarte, A. M., Medeiros, D. P., Duarte, J. P., Jorge, J., & Lopes, D.S. (2019). Usability studies on building early stage architectural models in virtual reality. Automation in Construction, 103, 104-116.
Di Serio, Á., Ibáñez, M. B., & Kloos, C. D. (2013). Impact of an augmented reality system on students' motivation for a visual art course. Computers & Education, 68, 586-596.
Driver, R. (1989). Changing conceptions. Adolescent development and school science. London: Falmer Press, 79-99.
Driver, R., Asoko, H., Leach, J., Scott, P., & Mortimer, E. (1994). Constructing scientific knowledge in the classroom. Educational researcher, 23(7), 5-12.
Ellwood, R., & Abrams, E. (2018). Student’s social interaction in inquiry-based science education: how experiences of flow can increase motivation and
achievement. Cultural Studies of Science Education, 13(2), 395-427.
Fosnot, C. T. (2005). Constructivism revisited: Implications and reflections. The Constructivist, 16(1), 1-17.
Fosnot, C. T. (2013). Constructivism: Theory, perspectives, and practice. 2nd
edition. Teachers College Press. Froiland, J. M., & Worrell, F. C. (2016). Intrinsic motivation, learning goals, engagement, and achievement in a diverse high school. Psychology in the Schools, 53(3), 321-336.
Gottfried, A. E. (2019). Academic intrinsic motivation: Theory, assessment, and longitudinal research. Advances in Motivation Science, 6, 71.
Glaser, Barney G. and Anselm L. Strauss (1967). The discovery of grounded theory. New York: Aldine Publishing Company.
Gupta, P. K., & Mili, R. (2017). Impact of academic motivation on academic achievement: A study on high schools students. European Journal of Education Studies, 2(10), 43-51.
Häfner, P., Häfner, V., & Ovtcharova, J. (2013). Teaching methodology for virtual reality practical course in engineering education. Procedia Computer Science, 25, 251-260.
Haury, D. L. (1993). Teaching science through inquiry. Retrieved from ERIC database. (ED 359048).
Herga, N. R., Čagran, B., & Dinevski, D. (2016). Virtual laboratory in the role of dynamic visualisation for better understanding of chemistry in primary school. Eurasia Journal of Mathematics, Science & Technology Education, 12(3), 593-608.
Hilfert, T., & König, M. (2016). Low-cost virtual reality environment for engineering and construction. Visualization in Engineering, 4(1), 1-18.
Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: a response to Kirschner, Sweller, and Clark. Educational psychologist, 42(2), 99-107.
Hodson, D., & Hodson, J. (1998). From constructivism to social constructivism: A Vygotskian perspective on teaching and learning science. School Science Review, 79(289), 33-41.
Hoffmann, M., Meisen, T., & Jeschke, S. (2014). Shifting Virtual Reality Education to the Next Level–Experiencing Remote Laboratories through Mixed Reality. In Proceedings of the International Conference on Computer Science, Computer Engineering, and Education Technologies, Kuala
Lumpur, Malaysia.
Hong, J. C., Kao, J. Y., & Lu, C. C. (2007). The Crystal Project: A Study of Inquiry-based science and technology learning in manufacturing settings. In Proceedings of the Redesigning Pedagogy: Culture, Knowledge and Understanding Conference, Singapore.
Hou, H. T., Chang, K. E., & Sung, Y. T. (2010). Applying lag sequential analysis to detect visual behavioural patterns of online learning activities. British Journal of Educational Technology, 41(2), 99-107.
Hsieh, M. C., & Lin, Y. H. (2017). VR and AR applications in medical practice and education. The Journal of Nursing, 64(6), 12-18.
Huang, H. M., Rauch, U., & Liaw, S. S. (2010). Investigating learners’ attitudes toward virtual reality learning environments: Based on a constructivist approach. Computers & Education, 55(3), 1171-1182.
Huang, T. C., Chen, C. C., & Chou, Y. W. (2016). Animating eco-education: To see, feel, and discover in an augmented reality-based experiential learning environment. Computers & Education, 96, 72-82.
Hwang, G. J., Chiu, L. Y., & Chen, C. H. (2015). A contextual game-based learning approach to improving students' inquiry-based learning performance in social studies courses. Computers & Education, 81, 13-25.
Janssen, J., Erkens, G., & Kanselaar, G. (2007). Visualization of agreement and discussion processes during computer-supported collaborative learning. Computers in Human Behavior, 23, 1105-1125.
Jarvis, P., Holford, J., & Griffin, C. (1998). The theory and practice of learning. London: Kogan Page.
Jonassen, D. H. (1991). Objectivism versus constructivism: Do we need a new philosophical paradigm? Educational Technology Research and Development, 39(3), 5-14.
Jordan, D., Müller, F., Drude, C., Reinhold, S., Schomakers, V., & Teistler, M.(2016). Spatial audio engineering in a virtual reality environment. Mensch
und Computer 2016-Tagungsband.
Kaiser, H. F. (1974). Little jiffy, mark IV. Educational and Psychological
Measurement, 34, 111-117.
Kalina, C., & Powell, K. C. (2009). Cognitive and social constructivism: Developing tools for an effective classroom. Education, 130(2), 241-250.
Kilani, M., Torabi, K., & Mao, G. (2018). Application of virtual laboratories and molecular simulations in teaching nanoengineering to undergraduate students. Computer Applications in Engineering Education, 26(5), 1527-
1538.
Kolb, D. (1984). Experiential learning: Experience as the source of learning and development. New York: Prentice-Hall.
Kolb, D. A., & Wolfe, D. M. (1981). Professional education and career development: A cross sectional study of adaptive competencies in experiential learning, lifelong learning and adult development project, final report.Retrieved from ERIC database. (ED209493)
Learning, I. B. (2013). Capacity Building Series: Inquiry-based learning. Secretariat Special Edition, 32, 1-8.
Lederman, N. G., & Lederman, J. S. (2012). Nature of scientific knowledge and scientific inquiry: Building instructional capacity through professional development. In Second international handbook of science education, 335-359. Dordrecht, The Netherlands: Springer.
Liu, R., Liu, C., & Ren, Y. (2018, July). A virtual reality application for primary school mathematics class. In 2018 International Symposium on Educational Technology (ISET), 138-141.Osaka, Japan.
Li, Y. F., Badjie, S., Chiu, Y. T., & Chen, W. W. (2018). Placing an FRP bridge in Taijiang national park and in virtual reality. Case Studies in Construction Materials, 8, 226-237.
Lim, D. H., Han, S. J., Oh, J., & Jang, C. S. (2019). Application of virtual and augmented reality for training and mentoring of higher education instructors. In Handbook of Research on Virtual Training and Mentoring of Online
Instructors, 325-344. IGI Global.
Longo, C. (2010). Fostering creativity or teaching to the test? Implications of state testing on the delivery of science instruction. The Clearing House, 83(2), 54-
57.
Lucas, M. (2018). Next VR is adding six-degree-of-freedom (6DoF) tracking to its live-streaming VR service. Retrieved from http://tcrn.ch/2CTYUlK
Lupton, M. (2017). Inquiry learning: A pedagogical and curriculum framework for information literacy. In Pathways Into Information Literacy and Communities of Practice, 29-51.
Martín-Gutiérrez, J., Mora, C. E., Añorbe-Díaz, B., & González-Marrero, A. (2017). Virtual technologies trends in education. EURASIA Journal of Mathematics Science and Technology Education, 13(2), 469-486.
Matson, J. O. (2006). Misconceptions about the nature of science, inquiry-based instruction, and constructivism: Creating confusion in the science classroom. Electronic Journal of Literacy through Science, 5(6), 1-10.
Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? American Psychologist, 59, 14–19.
Meyer, X. S., & Crawford, B. A. (2015). Multicultural inquiry toward demystifying scientific culture and learning science. Science Education, 99(4), 617–637.
National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: National Academy Press.
Neguţ, A., Matu, S. A., Sava, F. A., & David, D. (2016). Task difficulty of virtual reality-based assessment tools compared to classical paper-and-pencil or computerized measures: A meta-analytic approach. Computers in Human
Behavior, 54, 414-424.
Passig, D., Tzuriel, D., & Eshel-Kedmi, G. (2016). Improving children's cognitive modifiability by dynamic assessment in 3D immersive virtual reality environments. Computers & Education, 95, 296-308.
Piaget, J. (1985). The equilibration of cognitive structures: The central problem of intellectual development. University of Chicago press.
Pulijala, Y., Ma, M., Pears, M., Peebles, D., & Ayoub, A. (2018). An innovative virtual reality training tool for orthognathic surgery. International Journal of Oral and Maxillofacial Surgery, 47(9), 1199-1205.
Riva, G. (1999). Virtual reality as a communication tool: a socio-cognitive analysis. Presence, Teleoperators and Virtual Environments, 8, 460-466.
Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context. Oxford University Press.
Rosenstein, B. (2002). Video use in social science research and program evaluation. International Journal of Qualitative Methods, 1(3), 22-43.
Roy, E., Bakr, M. M., & George, R. (2017). The need for virtual reality simulators in dental education: A review. The Saudi Dental Journal, 29(2), 41-47.
Rubio-Tamayo, J., Gertrudix Barrio, M., & García García, F. (2017). Immersive environments and virtual reality: Systematic review and advances in communication, interaction and simulation. Multimodal Technologies and
Interaction, 1(4), 21.
Rumelhart, D. E., & Norman, D. A. (1976). Accretion, tuning and restructuring: Three modes of learning. In J. W. Cotton & R. Klatzky (Eds.), Semantic Factors in Cognition, 37-53. Hillsdale, NJ: Erlbaum.
Scharfenberg, F. J., & Bogner, F. X. (2013). Teaching gene technology in an outreach lab: students’ assigned cognitive load clusters and the clusters’ relationships to learner characteristics, laboratory variables, and cognitive achievement. Research in Science Education, 43(1), 141-161.
Scogin, S. C. (2016). Identifying the factors leading to success: How an innovative science curriculum cultivates student motivation. Journal of Science Education and Technology, 25(3), 375-393.
Serrano, B., Baños, R. M., & Botella, C. (2016). Virtual reality and stimulation of touch and smell for inducing relaxation: A randomized controlled trial. Computers in Human Behavior, 55, 1-8.
Stockdale, J., Hughes, C., Stronge, S., & Birch, M. (2019). Motivating midwifery students to digitalise their enquiry-based learning experiences: An evaluative case study. Studies in Educational Evaluation, 60, 59-65.
Stull, A. T., Gainer, M. J., & Hegarty, M. (2018). Learning by enacting: The role of embodiment in chemistry education. Learning and Instruction, 55, 80-92.
Suárez, Á., Specht, M., Prinsen, F., Kalz, M., & Ternier, S. (2018). A review of the types of mobile activities in mobile inquiry-based learning. Computers & Education, 118, 38-55.
Supasorn, S., & Lordkam, A. (2014). Enhancement of grade 7 students’ learning achievement of the matter separation by using inquiry learning activities. Procedia-Social and Behavioral Sciences, 116, 739-743.
Tasi, V. (2001). Mathematics and the roots of postmodern thought. Oxford University Press on Demand.
Trowbridge, L. W., & Bybee, R. W. (1986). Becoming a secondary school science teacher. Columbus, OH: Merrill.
Van Schijndel, T. J., Jansen, B. R., & Raijmakers, M. E. (2018). Do individual differences in children’s curiosity relate to their inquiry-based learning? International Journal of Science Education, 40(9), 996-1015.
Von Glasersfeld, E. (1990). An exposition of constructivism: Why some like it radical. In R. B. Davis, C. A. Maher, & N. Noddings (Eds.), Constructivist
View on the Teaching and Learning of Mathematics, 19-29. Reston, VA: National Council of Teachers of Mathematics.
Vygotsky, L, S.(1962). Thought and language. Cambridge, MA: MIT. Press.
Vygostky, L, S.(1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Havard University Press.
Wells, J., Lammi, M., Gero, J., Grubbs, M. E., Paretti, M., & Williams, C. (2016). Characterizing design cognition of high school students: Initial analyses comparing those with and without pre-engineering experiences. Journal of
Technology Education, 27(2), 78-91.
Wickens, C. D. (1992). Virtual reality and education. Proceedings of IEEE International Conference , 842-847. Chicago, USA.
Yao, H. P., Liu, Y. Z., & Han, C. S. (2012). Application expectation of virtual reality in basketball teaching. Procedia Engineering, 29, 4287-4291.
Zhang, Q., & Kou, Q. (2012). The course research for the software program based on the constructivism teaching theories. Physics Procedia, 25, 2294-2297.
Zhou, Y., Ji, S., Xu, T., & Wang, Z. (2018). Promoting knowledge construction: A model for using virtual reality interaction to enhance learning. Procedia
Computer Science, 130, 239-246.