研究生: |
黃可瑋 ke-wei huang |
---|---|
論文名稱: |
運用陀螺儀直觀控制機器手臂之研究 Gyroscope-Based Intuitive Control of Robotic Arm |
指導教授: |
陳美勇
Chen, Mei-Yung |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 陀螺儀 、機器手臂 |
英文關鍵詞: | Gyroscope, Robot arm. |
論文種類: | 學術論文 |
相關次數: | 點閱:329 下載:22 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
機器手臂在控制上有許多限制,操作者除了必須擁有專業的背景知識,還必須具備程式編寫能力。且程式語言有很大的獨立性,往往只有編寫人才能了解整個程式的運作方式。其他人若想了解整個程式的運作原理,通常需要花費許多的時間與精力。本研究目的是要讓不懂程式語言的人,也能夠運用陀螺儀輕易的控制機器手臂。
觀察人體手臂型態後,設計製作出模擬人體手臂的機器手臂。運用原廠CM-700控制器程式RoboPlus軟體,結合LabVIEW軟體進行控制。控制模式分兩大類,有電腦控制模式與陀螺儀控制模式。電腦控制模式包含,全自動控制模式和半自動控制模式。陀螺儀控制模式方面,把低成本之陀螺儀,裝置於操作者手臂。讓操作者先做設計好的訓練動作,透過補償值演算法來訓練控制系統。訓練後的控制系統,能根據操作者手臂上的陀螺儀訊號,精準控制機器手臂。控制系統經過訓練後,操作者便能自由的控制機器手臂,不再侷限於固定的訓練動作,達成直觀控制的標。
There are many limitations of control the robotic arm. The operator must have professional background knowledge, and must have programming abilities. Programming languages are greatly independent, therefore, generally only the programmers are able to understand the entire functioning process. If others wanted to understand the principle of operation of the entire program, it would take much time and much energy. The objective of this research is to allow operators who do not understand programming languages to intuitively control the robotic arm using the gyroscope.
After observing the human arm, this thesis design a robotic arm that simulates the human arm. using the original RoboPlus software program for the CM-700 controller, together with the LabVIEW software. There are two control modes, the computer control mode and the gyroscope control mode. The computer control mode includes automatic control mode, and semi-automatic control mode. In the gyroscope control mode, the low-costing gyroscope is attached to the operator’s arm. After allowing the operator to practice the previously designed movements, it is able to train the control system through Compensation value. The trained control system can control the robotic arm accurately through the signals from the gyroscope on the operator’s arms. After the control system has been trained, it allow the operator to freely control the robotic arm, achieving the objective of intuitive control.
參 考 文 獻
[1] M. J. H. Lum, J. Rosen, M. N. Sinanan, and B. Hannaford, “Optimization of a spherical mechanism for a minimally invasive surgical robot: theoretical and experimental approaches,” IEEE Trans. on Bio., Vol. 53, No. 7, pp. 1440-1445, July 2006.
[2] S. R. Platt, J. A. Hawks and M. E. Rentschler, “Vision and task assistance using modular wireless in vivo surgical robot,” IEEE Trans. on Bio., Vol. 56, No. 6, pp. 1700-1710, June 2009.
[3] P. Neto, J. N. Pires and A. P. Moreira, “Accelerometer-based control of an industrial robotic Arm,” IEEE Inter. on Rob., pp1192-1197, Sept 2009.
[4] R. Sekhar, R. K. Musalay, Y. Krishnamurthy and B. Shreenivas, “Inertial sensor based wireless control of a robotic arm,” IEEE Emerging Signal Processing Applications, pp87-90, 2012.
[5] G. S. Gupta, S. C. Mukhopadhyay, C. H. Messom and S. N. Demidenko, “Master–Slave control of a teleoperated anthropomorphic robotic arm with gripping force sensing,” IEEE Trans. on Instr., Vol. 55, No. 6, pp. 2136-2145, December 2006.
[6] J. Klein, S. Spencer, J. Allington, J. E. Bobrow and D. J. Reinkensmeyer, “Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass, robotic-arm exoskeleton,” IEEE Trans. on Rob., Vol. 26, No. 4, pp. 710-715, August 2010.
[7] J. C. Perry, J. Rosen and S. Burns, “Upper-Limb powered exoskeleton design,” IEEE trans. on mecha., Vol. 12, No. 4, August 2007.
[8] R. Tadakuma, Y. Asahara, H. Kajimoto, N. Kawakami, and S. Tachi, “Development of anthropomorphic Multi-D.O.F. master-slave arm for mutual telexistence,” IEEE Trans. on Visua., Vol. 11, No. 6, November/December 2005.
[9] P. Shenoy, K. J. Miller, B. Crawford and R. P. N. Rao, “Online electromyographic control of a robotic prosthesis,” IEEE Trans. on Bio., Vol. 55, No. 3, March 2008.
[10] D. Peleg, E. Braiman, E. Yom-Tov and G. F. Inbar, “Classification of finger activation for use in a robotic prosthesis Arm,” IEEE Trans. on Neu., Vol. 10, No. 4, pp. 290-293, December 2002.
[11] P. K. Artemiadis and K. J. Kyriakopoulos, “EMG-based control of a robot arm using low-dimensional Embeddings,” IEEE Trans. on Rob., Vol. 26, No. 2, pp. 393-398, April 2010.
[12] P. K. Artemiadis and K. J. Kyriakopoulos, “An EMG-based robot control scheme robust to time-varying EMG signal Features,” IEEE Trans. on Rob., Vol. 14, No. 3, pp. 582-588, May 2010.
[13] O. Fukuda, T. Tsuji, M. Kaneko and A. Otsuka, “A human-assisting manipulator teleoperated by EMG signals and arm motions,” IEEE Trans. on Rob., Vol. 19, No. 2, pp. 210-222, April 2003.
[14] H. J. Lee and S. Jung, “Gyro sensor drift compensation by kalman filter to control a mobile inverted pendulum robot system,” IEEE Inter. on Indus., pp. 1-6, 2006.
[15] G. S. Huang, C. K. Tung, H. C. Lin, and S. H. Hsiao, “Inverse kinematics analysis trajectory planning for a robot arm,” Proceedings of 2011 8th Asian Control Conference (ASCC), pp.965-970, May 2011.
[16] E. M. Jafarov, M. N. A. Parlakçı, and Y. Istefanopulos, “A new variable structure pid-controller design for robot manipulators,” IEEE Trans. on Con, Vol. 13, No. 1, pp.122-130, January 2005.
[17] J. Zhang, and A, Knoll, “A two-arm situated artificial communicator for human–robot cooperative assembly,” IEEE Trans. on Ind., Vol. 50, No. 4, pp.651-658, August 2003.
[18] R. Safaric, S. Sinjur, B. Zalik, And R. M. Parkin, “Control of robot arm with virtual environment via the internet,” Proceedings of the IEEE, Vol. 91, No. 3, pp.422-429, March 2003.
[19] R, Tadakuma, Y, Asahara, H, Kajimoto, N, Kawakami, and S, Tachi, “Development of anthropomorphic multi-d.o.f. master-slave arm for mutual telexistence,” IEEE Trans. on Visua., Vol. 11, No. 6, pp.626-636, November/December 2005.
[20] U. Kartoun, A. Shapiro, H, Stern, and Y, Edan, “Physical modeling of a bag knot in a robot learning system,” IEEE Trans. on Auto., Vol. 7, No. 1, pp.172-177, January 2010.
[21] Mark W. Spong, S. Hutchinson, M. Vidyasagar “Robot modeling and control,” United States of America, 2006.