研究生: |
黃慧菁 NINA HUANG |
---|---|
論文名稱: |
螢光及原子吸收光譜法探討雙苯雜環化合物的錯合現象 characterization of the complexes of macrocyclic diamides in fluorescence and atomic absorption spectrometry |
指導教授: |
劉高家秀
Liu Gao, Jia-Xiu |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 150 |
中文關鍵詞: | 螢光 、原子吸收 |
英文關鍵詞: | atomic absorption, fluorescence |
論文種類: | 學術論文 |
相關次數: | 點閱:238 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文合成一系列新的不同環數含硫、含氧二醯胺大環化合物,並對其做鑑定及應用研究。
在大環化合物上引入不同發光團側臂,及改變化合物之環數,可以快速地以螢光光譜在定性上測得低濃度金屬離子對大環化合物螢光訊號強弱的影響;由於金屬離子會與帶有螢光放射基團的大環化合物相互作用(interaction)或錯合(complex),因而改變發射團的電子組態,造成螢光放射光譜發生變化。由實驗結果得知,鈀(II)金屬離子使大環化合物之螢光增強,而鎳(II)等金屬離子螢光強度減弱,IA族金屬則對化合物之螢光無影響,此外可由螢光增強或減弱的程度,計算出大環化合物與金屬離子錯合之穩定常數。
本論文亦利用萃取及傳輸實驗,探討此類含硫及含氧二醯胺大環化合物對過渡金屬鈀(II)及銅(II)離子的錯合及傳輸能力。用機械震盪(shake)方式萃取,萃取45分鐘可達到萃取平衡。含硫及含氧系列的大環化合物,對鈀(II)離子的萃取,效率相差了約一半左右,含硫的化合物(1d-3d)萃取率均在90%以上,最大之1d達98%,而含氧的2a到3b則在52~56%之間;但對銅(II)即無此差別,選擇性較差。
Abstract:
The first part of this thesis pertains to the synthesis and characterization of a series of novel 17-18 membered sulfur or oxygen containing dibenzodiamides .
Introducing various chromophores and changing the size of the ring effected the intensity of the emitted fluorescence thus allowing readily spectral determination of the low concentration metal ions . The interaction between metal ion and the chromophore bearing macromolecule alters the electronic configuration of the chromophore, which in turn leads to a significant change of the resultant spectra. According to the experiment, palladium(II) ion intensifies the emitted fluorescence while copper(II) ion nickel(II) and chromine(III) tends to weaken it, respectively.This study also found that the alkali metal ion exert no effect on the fluorescence. For those compounds which enhance or quenching the fluorence, the dynamic complexing or quenching constant of the complex is determined accordingly.
The second part of this thesis is devoted to the extraction and transportation, which serve as the means to study the complex and their transportation ability of palladium(II) and copper(II), respectively. Extraction is done with the help of mechanical shaking. It takes about 45 minutes of shaking time to reach the equilibrium. In the series of experiments of palladium(II) extraction, those oxygen-containing macromolecules show inferior efficiency relative to its sulfur-containing counterpart. In general, the oxygen moiety exhibits only half of the efficiency of extraction as compared to the sulfur moiety while the extraction toward copper(II) shows no discriminatory result. Hence the sulfur containing macrocyclic diamides demonstrates high selectivity toward palladium (II) but no such power toward copper (II).
1.C.J.Pedersen;J.Am.Chem.Soc.,1967,89,7017.
2. (a)S.B.Wild;Pure appl.Chem.,1990.62,1139.
(b)G.A.Melson;”Coordination Chemistry of Macrocyclic
Compounds”,Plenum,New York.,1979.
3.E.Weber;J.L.Toner;D.A,Laidler;J.F.Stoddart;R.A.
Bartsch;Ed.”Crown Ethers and Analogs”,Wiely & Sons,New York.,1989.
4. C.J.Pederson;J.Am.Chem.Soc.,1970,92,386.
5.H.K.Frensdorff;J.Am.Chem.Soc.,1971,93,600.
6.R.M.Izatt;D.J.Eatough;J.Christensen;J.Chem.Rev.,
1974,74.351.
7.R.M.Izatt ;J.S.Bradshaw ;J.D.Lamb;Chem. Rev., 1985, 74,271.
8.J.S.Yang;S.Y.Chiou;K.L.Liau;J.Am.Chem.Soc.,2002,
124,2518.
9.Y.W.Liou;C.M.Wang;J.Electroanalytical.Chem.,2000,
481,102.
10.E.Hruska;J.Petranek;J.Polymer Bulletin.,1987,17,
103.
11.E.Kimura;Y.Kurogi;T.Tojo;M.Shionoya,M;.Shiro;J.Am.
Chem.Soc.,1991,113,4857.
12.E.Kimura;C.A.Dalimunte;A.Yamashita,R.Machida;J.Chem.Soc.Chem.Commun.,1985,1041.
13.E.Kimura;Y.Kurogi;S.Wada;M.Shionoya;J.Chem.Soc
Chem.Commun.,1989,781.
14. E.Kimura;Tetrahedron.,1992,48,6175.
15. E.Kimura ;Y.Kurogi;S.Wada;M.Shionoya;J.Chem.Soc.
Chem.Commun.,1988,1166.
16. E.Kimura;Pure & Appl.Chem,.1989,61,823.
17.F.P.Bossu;K.L.Chellappa;D.W.Margerum;J.Am.Chem.
Soc.,1977,99,2195.
18.S.G.Murray;F.R.Hartley;Chem.Rev.,1981,81,365.
19.K.Kubo;R.Ishige; J.Kubo;T.Sakurai;Talant,1999, 48,181.
20.K.Kubo;S.Sakaguchi;T.Sakurai;Talant.,1999,49,735.
21.K.Nakashima;S.Akiyama;I.Tanigawa;T.Kaneda;S.Misumi;Talanta.,1984,31,749.
22.A.P.DeSilva;S.A.DeSilva;J.Chem.Soc.Chem. Commun., 1986,1709.
23.S.Fery-Forgues;M.T.LeBris;J.P.Guette;B.Valeur; J.Chem.Soc.Chem.Commun,,1988,384.
24.M.Huston;A.W.Czarnik; J.Am.Chem.Soc.,1990,112,
7054.
25. A.P.DeSilva;K.R.A.S.Sandanayake;Angew.Chem.Int.Ed.
Engl.,1990,29,5193.
26.A.P.DeSilva;K.R.A.S.Sandanayake;Tetrahedron Lett.,
1991,32,421.
27.V.Thanaba;V.J.Krishnan;J.Am.Chem.Soc.,1982,104,
3463.
28.T.Takahashi;A.Uchiyama;B.C.Lynn;G.W.Gogel; Tetrahedron Lett.,1992,33,3825.
29.J.M.Miller;K.Balasanmugans;A.Fulcher;Org.Mass.
Spectrom.,1989,24,497.
30.M.Sawasda;Y.Okumura;H.Yamada;Y.Takai; Org.Mass.
Spectrom.,1993,28,1525.
31.G.E.Kirvan;D.W.Margerum;Inorg.Chem.,1985,24.3017.
32.H.Tsukube;J.Coord.Chem.,1987,16,101.
33.E.M.Choy;D.F.Evans;E.L.CusslerJ.Am.Chem.Soc.,1974,
96,7085.
34.R.M.Izatt;J. Pure & Appl.Chem.,1986,58,1453.
35.M.M.Wienk;T.B.Stolwijk;E.J.R.Sudholten;J.Reinnadt; J.Am.Chem.Soc.,1989, 111,798.
36.J.D.Lamb;J.J.Christensen;S.R.Izatt;K.Bedke;M.S.
Astin;R.M.Izatt; J.Am.Chem.Soc.,1980, 102,3399.
37.L.A.Fredrick;T.M.Fyles;V.A.Malik-Diemer;D.M.
Whitfield; J.Chem.Soc.Chem.Commun.,1980,1211.
38.B.Czech;S.I.Kang;R.A.Barsch;Tetrahedron Lett., 1983,24,457.
39.Y.Nakatsuji;H.Kobayashi;H.Okakara;J.Chem.Soc.
Chem.Commun.,1983,801.
40.E.Kimura;H.Sakamoto;M.Yoshinage;T.Shono;J.Chem.
Soc.Chem.Commun.,1983,978.
41.S.Izatt;R.T.Hawkins;J.J.Christensen; R.M.Izatt;J.Am.Chem.Soc.,1985, 107,63.
42.R.D.Hancock;A.E.Martell;J.Chem.Edu.,1996,73,654.
43.K.Kimura;G.Yokota;M.Yokoyama;R.M.Uda;Macromolecules.,2001,34,2262.
44.Y.Nakatsuji;K.K.Hirofumi;W.Zhang;T.Kida;I.Ikeda; J.Am.Chem.Soc.,2000, 122,6307.
45.M.Montalti;L.Prodi,N.Zaccheroni;J.Fluorescence.
2000,10,71.
46.H.F.Ji;R.Dabestani;G.M.Brown;R.A.Sacheben;Chem.
Commun.,2000,833.
47.D.A.Skoog;J.J.Leary;”Principle of instrumental analysis”,pp.174-193 .
48.J.R.Lakowicz;”Principles of Fluorescence Spectroscopy”, New York:Plenum Press(1983).
49.R.A.Bartsch;G.G.Talanova;V.S.Talanov;Anal.Chem.,1999,
71,3106.
50.H.Warmke;W.Wiczk;T.Ossowski;Talanta.,2000,52,449.
51.T.Hayashita;S.Taniguchi;Y.Tanamura;T.Uchida;S.Nishizawa;N.Teramae;Y.S.Jin;J.C.Lee;R.A.
Bartsch;J.Chem.Soc.,Perkin Trans.2,2000,1003.
52.A.Torrado;G.K.Walkup;B.Imperiali;J.Am.Chem.Soc.,
1998, 120,609.
53.Y.A.Shihadeh;A.Benito;J.M.Lioris;R.M.Máñez;T.Pardo;J.Soto;M.D.Marcos;J.Chem.Soc.,Dalton Trans.,
2000,1199.
54.Y.Clarke;W.Xu;J.N.Demas;B.A.DeGraff;Anal.Chem.,2000,
72,3468.
55.S.Draxler;M.E.Lippitsch;Sensors and Actuators B.,
1995,29,199.
56.H.Ji;R.Dabestani;G.M.Brown;R.L.Hettich;Photochemistry and Photobiology.,1999,69(5),513.
57.K.Yoshida;T.Mori;S.Watanabe;H.Kawai;T.Nagamura; J.Chem.Soc.,Perkin Trans.2.,1999,393.
58.J.Bourson;J.Pouget;B.Valeur;J.Phys.Chem.,1993,
97,4552.
59.I.Kása;B.Ágai;M.Kubinyi;A.Grofcsik:Journal of Molecular Structure.,1997,408/409,547.
60.K.Rurack;M.Kollmannsberger;J.Daub;J.Am.Chem.Soc.,
2000, 122,968.
61.G.E.Collins;;L.S.Choi;J.H.Callahan;J.Am.Chem.Soc.,
1998, 120,1474.
62.B.Ramachandram;G.Saroja;N.B.Sankaran;A.Samanta;J.Phys.Chem.B.,2000,104,11824.
63.R.T.Bronson;J.S.Bradshaw;P.B.Savage;S.Fuangswasdi;
S.C.Lee;K.E.Krakowiak;R.M.Izatt;J.Org.Chem.,
2001,66(14),4752.
64.L.Prodi;C.Bargossi;M.Montalti;N.Zaccheroni;N.Su;J.S.Bradshaw;R.M.Izatt;P.B.Savage., J.Am.Chem.
Soc.,2000, 122,6769.
65.T.Werner;K.Fähnrich;C.Huber;O.S.Wolfbeis;Photochemistry and Photobiology.,1999,70(4),585.
66.Y.Suzuki;T.Morozumi;H.Nakamura;J.Phys.Chem.B.,
1998,102,7910.
67.J.Bourson;M.N.Borrel;B.Valeur;Analytica Chimica Acta.,1992,257,189.
68.W.S.Xia;R.H.Schmehl;C.J.Li;Chem.Commun.,2000,695.
69.T.Oe;M.Morita;T.Toyooka;Analytical Sciences.,
1999,15,1021.
70.T.Hayashita;H.Sawano;T.Higuchi;M.Indo;K.Hiratani;Z.Y.Zhang;R.A.Bartsch;Anal.Chem.,1999,71,791.
71.K.Kita;T.Kida;Y.Nakatsuji;I.Ikeda;J.Chem.Soc.,
Perkin Trans.1,1998,3857.
72.K.Hiratani;T.Takahashi;H.Sugihara;K.Kasuga;K.Fujiwara;T.Hayashita;R.A.Bartsch;Anal.Chem.,
1997,69,3002.
73.G.G.Talanova;N.S.A.Elkarim;R.E.Hanes;H.S.Hwang;R.D.Rogers;R.A.Bartsch;Anal.Chem.,1999,71,672.
74.宋瑞華;國立台灣師範大學碩士論文,1993.