研究生: |
許芷寒 Hsu, Chih-Han |
---|---|
論文名稱: |
人工劣化絲絹之製作與其在古絹布字畫文物修復上的應用 Production of artificial aging silks in application to conservation of ancient Chinese calligraphies and paintings |
指導教授: |
林震煌
Lin, Cheng-Huang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | 蠶絲絹 、文物修復科技 、老化實驗 、拉曼光譜儀 、色差儀 |
英文關鍵詞: | silk, conservation, artificial aging, Raman spectra, color meter |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DC.010.2018.B05 |
論文種類: | 學術論文 |
相關次數: | 點閱:213 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蠶絲絹是東方特有材質,自古以來便廣泛使用在繪畫、書法以及生活記事上歷經數千年的歷史。蠶絲主要由外層絲膠蛋白(20-30%)及內層絲蛋白(70-80%)兩種蛋白質所構成。古代以蠶絲為原料,用特殊的平紋編織方式,可以得到質地細膩、平整的蠶絲畫絹。亞洲大部分地區如中國及日本,許多出土的或是館藏的絹帛字畫文物,由於年代久遠,蠶絲絹也會隨著不同年代呈現老化現象。這些由於年代久遠所造成的破損或自然老朽問題,是現今進行保存或修復時的重要課題。
目前,在文物保存修復專業中,為稟持「安全性、歷史性」的修復原則,書畫修復師要進行古字畫修復時,必須選擇機械性質及色調差異較少的人造劣化絹來做填補。然而理想的劣化絹往往難以取得,以日本為例,現行的劣化絲絹的製造方法大多是採用γ射線,但此方法容易造成絲絹表面受損,使得修復時會發生不易全色的問題。人造劣化絹在日本文物修復領域很早就開始被重視及發展,為了修補古字畫並且避免修補用的現代絲絹過度受損,分別發展出了電子射線、紫外光,來製造人造劣化絹作為修補材料之用。雖然紫外光照射法比較不容易造成過度受損,但這方法容需要長時間曝曬,且易造成絲絹表面顏色過於黃化,事後還要再用過氧化氫漂白,反而造成不必要的化學試劑殘留問題。
本研究嘗試探討另項人造劣化絹的製造方法,來比較絲絹的劣化程度,藉以開發人工劣化絹的製造方法,且盡量都將實驗時間控制在10天左右。實驗結果發現,各種劣化的方法中,溫度的控制是影響其對絲絹劣化的重要關鍵。本實驗所製備出之人工劣化絲絹樣品在進行劣化的前後,分別使用分光色差儀、拉曼光譜儀、掃描式電子顯微鏡及拉伸測試機,進行科學數據的測量。並成功發現利用本篇之方法所開發之劣化絹,劣化前後有明顯的拉曼光譜圖差異。劣化絲絹與新絹的分光色差儀測量到的結果ΔCIE_L = -2.83、ΔCIE_A = 0.54、ΔCIE_B = 9.25、ΔCIE_E = 6.8296。這些都可作為製作改進人造劣化絹的重要參考依據。
Silk is the special material in Asian paintings. It has been used in such as painting、calligraphy and record for more than thousands of years. The mainly components of silk are two different types of proteins, inner layer silk fibroin (70-80%) and outer layer sericin (20-30%). Most of the silk of unearthed and collected relics discovered in Asian area such as China and Japan would appear nature aging phenomenon as time goes on. Problems of damage or aging of relics with age would be a very important issue in conservation and restoration. In the conservation field nowadays, when painting conservators conduct the silk conservation case, they must pick the artificial aging silk with the most similar mechanical properties and color compared with the original one to do the restoration in order to stick to the conservation principle of safety and history. However, the ideal aging silk is difficult to get. Take Japan for example, the production of artificial aging silk mainly use γ radiation but this method would cause the surface of silk be damaged very easily and that would be more difficult for conservator to retouch, too. We try to research another way to produce artificial aging silks by comparing the degree of aging silk for the sake of developing a new method of artificial aging silks production. The time we spent on all experimental conditions is controlled in 10 days. Finally, we found that temperature is the major condition for aging silks. SEM、colormeter、Raman spectra and tensile test were used to compare the consequences after experiments . And we also found the Raman spectra has significant signal difference and the colormeter data of the best artificial aging silk is ΔCIE_L = -2.83、ΔCIE_A = 0.54、ΔCIE_B = 9.25、ΔCIE_E = 6.8296. All of these results can be important data of improving artificial aging silks production.
[1]. Daniels, V.; Hacke, M.; Xian Qiu, J.; Marabini, V., A Traditional Chinese Method for Weakening Silk for Use in the Conservation of Silk Paintings. Vol. 7. 2013. 41-51.
[2]. Kojthung, A.; Meesilpa, P.; Sudatis, B.; Treeratanapiboon, L.; Udomsangpetch, R.; Oonkhanond, B., Effects of Gamma Radiation on Biodegradation of Bombyx Mori Silk Fibroin. International Biodeterioration & Biodegradation, 2008. 62(4): p. 487-490.
[3]. 川野邊渉; 佐野千絵; 米山めぐ美; 三浦定俊; 田畔徳一; 岡岩太郎, 紫外線劣化絹の修復材料への応用の可能性. 保存科学, 1996(35): p. 40-48.
[4]. 平林潔; 野呂周史; 柳悦州; 熊倉稔, 絹の劣化と結晶性. マテリアルライフ, 1991. 3(4): p. 213-217.
[5]. 塚田益裕; 青木昭, Γ 線照射による絹糸の力学的特性の変化. 日本蚕糸学雑誌, 1985. 54(1): p. 17-20.
[6]. 胡衛軍; 柳悦州; 平林潔; 吉武成美, 絹の劣化に対する酸素と紫外線の影響. 日本蚕糸学雑誌, 1988. 57(6): p. 506-510.
[7]. 北野信彦; 肥塚隆保, 江戸時代における鉄丹ベンガラの製法に関する復元的実験. 文化財保存修復学会誌: 古文化財之科学, 1998. 42: p. 26-34.
[8]. Nilsson, J., Artificial Aging of Silk in Order to Achieve the Fragility of 17th Century Silk.
[9]. Yen, S.-F., Artifi Cial Aging Treatment of the Silk for Conservation of Chinese Painting. Journal of Cultural Heritage Conservation, 2009(9): p. 13-26.
[10]. Vepari, C.; Kaplan, D.L., Silk as a Biomaterial. Progress in Polymer Science, 2007. 32(8): p. 991-1007.
[11]. Shao, Z.; Vollrath, F., Materials: Surprising Strength of Silkworm Silk. Nature, 2002. 418(6899): p. 741.
[12]. Shen, Y.; Johnson, M.A.; Martin, D.C., Microstructural Characterization of Bombyx Mori Silk Fibers. Macromolecules, 1998. 31(25): p. 8857-8864.
[13]. Inouye, K.; Kurokawa, M.; Nishikawa, S.; Tsukada, M., Use of Bombyx Mori Silk Fibroin as a Substratum for Cultivation of Animal Cells. Journal of biochemical and biophysical methods, 1998. 37(3): p. 159-164.
[14]. Becker, M.A.; Willman, P.; Tuross, N.C., The Us First Ladies Gowns: A Biochemical Study of Silk Preservation. Journal of the American Institute for Conservation, 1995. 34(2): p. 141-152.
[15]. Day, F.E., Silks of the near East.
[16]. Kundu, B.; Rajkhowa, R.; Kundu, S.C.; Wang, X., Silk Fibroin Biomaterials for Tissue Regenerations. Advanced drug delivery reviews, 2013. 65(4): p. 457-470.
[17]. Ghosh, S.; Laha, M.; Mondal, S.; Sengupta, S.; Kaplan, D.L., In Vitro Model of Mesenchymal Condensation During Chondrogenic Development. Biomaterials, 2009. 30(33): p. 6530-6540.
[18]. Zhang, X.; Baughman, C.B.; Kaplan, D.L., In Vitro Evaluation of Electrospun Silk Fibroin Scaffolds for Vascular Cell Growth. Biomaterials, 2008. 29(14): p. 2217-2227.
[19]. Schneider, A.; Wang, X.; Kaplan, D.; Garlick, J.; Egles, C., Biofunctionalized Electrospun Silk Mats as a Topical Bioactive Dressing for Accelerated Wound Healing. Acta Biomaterialia, 2009. 5(7): p. 2570-2578.
[20]. Hofmann, S.; Foo, C.W.P.; Rossetti, F.; Textor, M.; Vunjak-Novakovic, G.; Kaplan, D.; Merkle, H.; Meinel, L., Silk Fibroin as an Organic Polymer for Controlled Drug Delivery. Journal of Controlled Release, 2006. 111(1-2): p. 219-227.
[21]. Wang, X.; Yucel, T.; Lu, Q.; Hu, X.; Kaplan, D.L., Silk Nanospheres and Microspheres from Silk/Pva Blend Films for Drug Delivery. Biomaterials, 2010. 31(6): p. 1025-1035.
[22]. Pritchard, E.M.; Szybala, C.; Boison, D.; Kaplan, D.L., Silk Fibroin Encapsulated Powder Reservoirs for Sustained Release of Adenosine. Journal of Controlled Release, 2010. 144(2): p. 159-167.
[23]. Szybala, C.; Pritchard, E.M.; Lusardi, T.A.; Li, T.; Wilz, A.; Kaplan, D.L.; Boison, D., Antiepileptic Effects of Silk-Polymer Based Adenosine Release in Kindled Rats. Experimental neurology, 2009. 219(1): p. 126-135.
[24]. Winter, J., ‘Lead White’in Japanese Paintings. Studies in conservation, 1981. 26(3): p. 89-101.
[25]. Gao, J.; Hsiao, Y., Mounting Techniques for Asian Silk Paintings and Calligraphy Using Two Colours of Lining Paper. Studies in Conservation, 2014. 59(sup1): p. S217-S218.
[26]. Kakoauei, M.; Kakouei, E.; Kumaran, S., History, Technology, and Treatment of a Painted Silk Folding Screen Belonging to the Palace-Museum of Golestan in Iran. Fibres & Textiles in Eastern Europe, 2014(2 (104)): p. 69--75.
[27]. Uyeda, T.T., How Far Do We Go?Compensation and Mounting Choices in the Treatment of Japanese Paintings. The Book and Paper Group Annual, 2011. 30: p. 101-111.
[28]. Cather, S. Complexity and Communication: Principles of in Situ Conservation. in Conservation of Ancient Sites on the Silk Road: Proceedings of an International Conference on the Conservation of Grotto Sites. 1997. Getty Conservation Inst.
[29]. Altman, G.H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R.L.; Chen, J.; Lu, H.; Richmond, J.; Kaplan, D.L., Silk-Based Biomaterials. Biomaterials, 2003. 24(3): p. 401-416.
[30]. Jin, H.-J.; Fridrikh, S.V.; Rutledge, G.C.; Kaplan, D.L., Electrospinning Bombyx Mori Silk with Poly(Ethylene Oxide). Biomacromolecules, 2002. 3(6): p. 1233-1239.
[31]. Rockwood, D.N.; Preda, R.C.; Yücel, T.; Wang, X.; Lovett, M.L.; Kaplan, D.L., Materials Fabrication from Bombyx Mori Silk Fibroin. Nature protocols, 2011. 6(10): p. 1612.
[32]. Jin, H.-J.; Kaplan, D.L., Mechanism of Silk Processing in Insects and Spiders. Nature, 2003. 424: p. 1057.
[33]. Ayutsede, J.; Gandhi, M.; Sukigara, S.; Micklus, M.; Chen, H.-E.; Ko, F., Regeneration of Bombyx Mori Silk by Electrospinning. Part 3: Characterization of Electrospun Nonwoven Mat. Polymer, 2005. 46(5): p. 1625-1634.
[34]. Liu, B.; Song, Y.-W.; Jin, L.; Wang, Z.-J.; Pu, D.-Y.; Lin, S.-Q.; Zhou, C.; You, H.-J.; Ma, Y.; Li, J.-M.; Yang, L.; Sung, K.L.P.; Zhang, Y.-G., Silk Structure and Degradation. Colloids and Surfaces B: Biointerfaces, 2015. 131: p. 122-128.
[35]. Gulrajani, M., Degumming of Silk. Coloration Technology, 1992. 22(1): p. 79-89.
[36]. Jiang, P.; Liu, H.; Wang, C.; Wu, L.; Huang, J.; Guo, C., Tensile Behavior and Morphology of Differently Degummed Silkworm (Bombyx Mori) Cocoon Silk Fibres. Materials Letters, 2006. 60(7): p. 919-925.
[37]. 華海燕, 劉., <絲膠特性及其在修復古畫上之利用 .Pdf>. 2002.
[38]. Zhou, C.-Z.; Confalonieri, F.; Medina, N.; Zivanovic, Y.; Esnault, C.; Yang, T.; Jacquet, M.; Janin, J.; Duguet, M.; Perasso, R.; Li, Z.-G., Fine Organization of Bombyx Mori Fibroin Heavy Chain Gene. Nucleic Acids Research, 2000. 28(12): p. 2413-2419.
[39]. Yamaguchi, K.; Kikuchi, Y.; Takagi, T.; Kikuchi, A.; Oyama, F.; Shimura, K.; Mizuno, S., Primary Structure of the Silk Fibroin Light Chain Determined by Cdna Sequencing and Peptide Analysis. Journal of Molecular Biology, 1989. 210(1): p. 127-139.
[40]. Marsh, R.E.; Corey, R.B.; Pauling, L., An Investigation of the Structure of Silk Fibroin. Biochimica et Biophysica acta, 1955. 16: p. 1-34.
[41]. Qi, Y.; Wang, H.; Wei, K.; Yang, Y.; Zheng, R.-Y.; Kim, I.S.; Zhang, K.-Q., A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures. International journal of molecular sciences, 2017. 18(3): p. 237.
[42]. Lotz, B.; Cesari, F.C., The Chemical Structure and the Crystalline Structures of Bombyx Mori Silk Fibroin. Biochimie, 1979. 61(2): p. 205-214.
[43]. Inoue, S.; Tanaka, K.; Arisaka, F.; Kimura, S.; Ohtomo, K.; Mizuno, S., Silk Fibroin of Bombyx Mori Is Secreted, Assembling a High Molecular Mass Elementary Unit Consisting of H-Chain, L-Chain, and P25, with a 6: 6: 1 Molar Ratio. Journal of Biological Chemistry, 2000. 275(51): p. 40517-40528.
[44]. Allardyce, B.J.; Rajkhowa, R.; Dilley, R.J.; Atlas, M.D.; Kaur, J.; Wang, X., The Impact of Degumming Conditions on the Properties of Silk Films for Biomedical Applications. Textile Research Journal, 2016. 86(3): p. 275-287.
[45]. Volkov, V.; Ferreira, A.V.; Cavaco‐Paulo, A., On the Routines of Wild‐Type Silk Fibroin Processing toward Silk‐Inspired Materials: A Review. Macromolecular Materials and Engineering, 2015. 300(12): p. 1199-1216.
[46]. Mccreery., R.L., Sampling Modes in Raman Spectroscopy, in Raman Spectroscopy for Chemical Analysis. New York: Wiley Interscience. 2000.
[47]. Colthup, N., Introduction to Infrared and Raman Spectroscopy. 2012: Elsevier.
[48]. Graves, P.; Gardiner, D., Practical Raman Spectroscopy. 1989, Springer.
[49]. Yu, B.S.; Fang, J.N.; Huang, E.P., Characteristics of the Raman Spectra of Archaeological Malachites. Journal of Raman Spectroscopy, 2013. 44(4): p. 630-636.
[50]. Coccato, A.; Jehlicka, J.; Moens, L.; Vandenabeele, P., Raman Spectroscopy for the Investigation of Carbon‐Based Black Pigments. Journal of Raman Spectroscopy, 2015. 46(10): p. 1003-1015.
[51]. Muro, C.K.; De Souza Fernandes, L.; Lednev, I.K., Sex Determination Based on Raman Spectroscopy of Saliva Traces for Forensic Purposes. Analytical chemistry, 2016. 88(24): p. 12489-12493.
[52]. Robinet, L.; Coupry, C.; Eremin, K.; Hall, C., The Use of Raman Spectrometry to Predict the Stability of Historic Glasses. Journal of Raman Spectroscopy, 2006. 37(7): p. 789-797.
[53]. Dresselhaus, M.S.; Dresselhaus, G.; Saito, R.; Jorio, A., Raman Spectroscopy of Carbon Nanotubes. Physics reports, 2005. 409(2): p. 47-99.
[54]. Malard, L.; Pimenta, M.; Dresselhaus, G.; Dresselhaus, M., Raman Spectroscopy in Graphene. Physics Reports, 2009. 473(5-6): p. 51-87.
[55]. Li, D.-W.; Zhai, W.-L.; Li, Y.-T.; Long, Y.-T., Recent Progress in Surface Enhanced Raman Spectroscopy for the Detection of Environmental Pollutants. Microchimica Acta, 2014. 181(1-2): p. 23-43.
[56]. Hirschfeld, T.; Schildkraut, E.; Tannenbaum, H.; Tanenbaum, D., Remote Spectroscopic Analysis of Ppm‐Level Air Pollutants by Raman Spectroscopy. Applied Physics Letters, 1973. 22(1): p. 38-40.
[57]. Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L., Spatially Resolved Raman Spectroscopy of Single-and Few-Layer Graphene. Nano letters, 2007. 7(2): p. 238-242.
[58]. Movasaghi, Z.; Rehman, S.; Rehman, I.U., Raman Spectroscopy of Biological Tissues. Applied Spectroscopy Reviews, 2007. 42(5): p. 493-541.
[59]. Manoharan, R.; Wang, Y.; Feld, M.S., Histochemical Analysis of Biological Tissues Using Raman Spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1996. 52(2): p. 215-249.
[60]. Moura, C.C.; Tare, R.S.; Oreffo, R.O.; Mahajan, S., Raman Spectroscopy and Coherent Anti-Stokes Raman Scattering Imaging: Prospective Tools for Monitoring Skeletal Cells and Skeletal Regeneration. Journal of The Royal Society Interface, 2016. 13(118): p. 20160182.
[61]. 徐海松, 颜色技术原理及在印染中的应用 (十三) 第九篇分光光度测色仪器. 印染, 2006. 32(6): p. 41-44.
[62]. Sharma, G.; Wu, W.; Dalal, E.N., The Ciede2000 Color‐Difference Formula: Implementation Notes, Supplementary Test Data, and Mathematical Observations. Color Research & Application, 2005. 30(1): p. 21-30.
[63]. Wells, O.C.; Joy, D.C., The Early History and Future of the Sem. Surface and interface analysis, 2006. 38(12‐13): p. 1738-1742.
[64]. Bogner, A.; Jouneau, P.-H.; Thollet, G.; Basset, D.; Gauthier, C., A History of Scanning Electron Microscopy Developments: Towards “Wet-Stem” Imaging. Micron, 2007. 38(4): p. 390-401.
[65]. Mcmullan, D., Scanning Electron Microscopy 1928–1965. Scanning, 1995. 17(3): p. 175-185.
[66]. Cheydleur, R.; O’connor, K., Successful Color Management of Paper with Optical Brighteners.
[67]. Cheydleur, R., The M Factor…What Does It Mean? 2011.
[68]. Iso, B., 13655: 2009. Graphic technology–Spectral measurement and colorimetric computation for graphic arts images. London: BSI Group, 2010.
[69]. Astm D5035.