簡易檢索 / 詳目顯示

研究生: 楊琇欐
Yang, Xiu-Li
論文名稱: YAP與Rab18調節成年哺乳動物腦中側腦室下區之神經幹細胞功能
YAP and Rab18 regulate properties of adult neural stem cells in the mammalian subventricular zone
指導教授: 王慈蔚
Wang, Tsu-Wei
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 55
中文關鍵詞: 成年神經幹細胞
英文關鍵詞: SHH, adult neural stem cells
DOI URL: http://doi.org/10.6345/NTNU201900785
論文種類: 學術論文
相關次數: 點閱:125下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 成年神經幹細胞存在於哺乳動物大腦中的兩個位置,一個位於側腦室的腦室下區(subventricular zone, SVZ),另一個位於海馬齒狀回的顆粒下區(subgranular zone, SGZ)。在胚胎發育過程中,YAP和Sonic hedgehog(SHH)訊息傳遞路徑會維持神經幹細胞並抑制其分化。實驗室先前研究發現YAP會激活SHH訊息傳遞路徑來抑制胚胎皮質前驅細胞中的神經元分化,此外YAP在成年SVZ中會維持神經幹細胞功能。故我們假設YAP也會通過SHH訊息傳遞路徑調節成年神經幹細胞的行為。我們先檢查了成年大腦中兩個SHH訊息傳遞路徑的蛋白質PTCH1和Gli2之表達,發現它們存在於SVZ中。我們以Cre-loxP系統專一剔除小鼠SVZ神經幹細胞中的yap並觀察PTCH1和Gli2之蛋白質表達,發現Gli2表現量下調,表示YAP確實會調控SHH訊息傳遞路徑。另一方面我們在神經球 (neurosphere)培養實驗中SHH訊息傳遞路徑是否介導YAP對神經幹細胞功能的影響。我們發現Gli1的下降抑制了YAP誘導的神經球形成,表示SHH訊息傳遞路徑在YAP的下游並在發育階段和成年階段調節神經幹細胞。Rab18是屬於Ras相關的小GTP酶Rab家族之成員,它調節神經內分泌細胞系中多巴胺的釋放。實驗室先前研究發現Rab18以non-autonomous的方式調節成年神經元新生,通過抑制多巴胺分泌來增加腦中催乳素濃度來增進成年神經元新生。在此我們探討Rab18是否也能透過autonomous作用影響出生後神經元新生。我們取出生後第7天小鼠SVZ培養的初代神經球之神經幹細胞,用針對Rab18的兩種shRNA來降低Rab18表達,發現Rab18不影響神經幹細胞分化成神經元或星狀膠質細胞,但它是神經幹細胞增殖所必需的。另一方面我們發現Rab18的下降使第二代神經球形成有減少的趨勢,表示Rab18有可能會維持神經幹細胞自我更新。綜合以上發現,YAP和Rab18會調節出生後SVZ中的成年神經元新生。

    Neural stem cells (NSCs) exist in two places in the adult mammalian brain, the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. During embryonic development, YAP and Sonic hedgehog (SHH) pathway maintain NSCs and inhibit their differentiation. Previously, we find that YAP activates the SHH pathway to inhibit neuronal differentiation in the embryonic cortical progenitor cells. In addition, YAP maintains NSCs in the adult SVZ. We hypothesize that YAP also regulates the behavior of adult NSCs through the SHH pathway. First, we examined the expression pattern of PTCH1 and Gli2, two SHH pathway proteins in the adult brain and found that they were present in the SVZ. We studied whether their expression was downregulated by SVZ-specific knockout of yap with Cre-loxP system. We found that knockout of YAP decreased Gli2 expression. Our finding suggests that YAP regulates the expression of Gli2. Furthermore, we studied whether the SHH pathway mediated the effect of YAP on postnatal NSC functions with the neurosphere culture. We found that knockdown of Gli1 inhibited YAP-induced neurosphere formation. Our finding suggests that the SHH pathway acts downstream of YAP to regulate the properties of NSCs both in the developmental and adult stage. In addition, Rab18, a member of Ras-related small GTPase superfamily, regulates Ca2+-mediated exocytosis of dopamine in neuroendocrine cell lines. Previous, we find that Rab18 regulates adult neurogenesis in a cell non-autonomous manner that it increases the prolactin level in the brain by inhibiting dopamine secretion. Here, we examined whether Rab18 also controlled postnatal neurogenesis autonomously. We decreased Rab18 expression with two shRNA constructs against Rab18 in NSCs derived from primary neurospheres of postnatal day seven SVZ and found that Rab18 did not affect the differentiation of NSCs into neurons or astrocytes. Interestingly, it was required for proliferation of NSCs. Furthermore, we found that knockdown of Rab18 may inhibit neurosphere formation. Our finding suggests that Rab18 may regulate the properties of NSCs in the postnatal SVZ. Taken together, our results suggest that YAP and Rab18 regulate adult neurogenesis in the postnatal SVZ.

    Abstract ii 中文摘要 iv 緒論 1 研究目的 7 材料與方法 8 結果 13 討論 21 表 28 圖 29 參考文獻 50

    Ahn, S., and Joyner, A.L. (2005). In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437, 894-897.
    Arsenijevic, Y., Weiss, S., Schneider, B., and Aebischer, P. (2001). Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J Neurosci 21, 7194-7202.
    Baldin, V., Lukas, J., Marcote, M.J., Pagano, M., and Draetta, G. (1993). Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 7, 812-821.
    Bem, D., Yoshimura, S., Nunes-Bastos, R., Bond, F.C., Kurian, M.A., Rahman, F., Handley, M.T., Hadzhiev, Y., Masood, I., Straatman-Iwanowska, A.A., et al. (2011). Loss-of-function mutations in RAB18 cause Warburg micro syndrome. Am J Hum Genet 88, 499-507.
    Bhardwaj, G., Murdoch, B., Wu, D., Baker, D.P., Williams, K.P., Chadwick, K., Ling, L.E., Karanu, F.N., and Bhatia, M. (2001). Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2, 172-180.
    Burns, K.A., Ayoub, A.E., Breunig, J.J., Adhami, F., Weng, W.L., Colbert, M.C., Rakic, P., and Kuan, C.Y. (2007). Nestin-CreER mice reveal DNA synthesis by nonapoptotic neurons following cerebral ischemia hypoxia. Cereb Cortex 17, 2585-2592.
    Cameron, H.A., and Glover, L.R. (2015). Adult neurogenesis: beyond learning and memory. Annu Rev Psychol 66, 53-81.
    Cao, X., Pfaff, S.L., and Gage, F.H. (2008). YAP regulates neural progenitor cell number via the TEA domain transcription factor. Genes Dev 22, 3320-3334.
    Choudhry, Z., Rikani, A.A., Choudhry, A.M., Tariq, S., Zakaria, F., Asghar, M.W., Sarfraz, M.K., Haider, K., Shafiq, A.A., and Mobassarah, N.J. (2014). Sonic hedgehog signalling pathway: a complex network. Ann Neurosci 21, 28-31.
    Daynac, M., Tirou, L., Faure, H., Mouthon, M.A., Gauthier, L.R., Hahn, H., Boussin, F.D., and Ruat, M. (2016). Hedgehog Controls Quiescence and Activation of Neural Stem Cells in the Adult Ventricular-Subventricular Zone. Stem Cell Reports 7, 735-748.
    Dejgaard, S.Y., Murshid, A., Erman, A., Kizilay, O., Verbich, D., Lodge, R., Dejgaard, K., Ly-Hartig, T.B., Pepperkok, R., Simpson, J.C., et al. (2008). Rab18 and Rab43 have key roles in ER-Golgi trafficking. J Cell Sci 121, 2768-2781.
    Elias, M., Brighouse, A., Gabernet-Castello, C., Field, M.C., and Dacks, J.B. (2012). Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J Cell Sci 125, 2500-2508.
    Engler, A., Rolando, C., Giachino, C., Saotome, I., Erni, A., Brien, C., Zhang, R., Zimber-Strobl, U., Radtke, F., Artavanis-Tsakonas, S., et al. (2018). Notch2 Signaling Maintains NSC Quiescence in the Murine Ventricular-Subventricular Zone. Cell Rep 22, 992-1002.
    Feierstein, C.E. (2012). Linking adult olfactory neurogenesis to social behavior. Front Neurosci 6, 173.
    Feijoo, C.G., Onate, M.G., Milla, L.A., and Palma, V.A. (2011). Sonic hedgehog (Shh)-Gli signaling controls neural progenitor cell division in the developing tectum in zebrafish. Eur J Neurosci 33, 589-598.
    Fernandez, L.A., Northcott, P.A., Dalton, J., Fraga, C., Ellison, D., Angers, S., Taylor, M.D., and Kenney, A.M. (2009). YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev 23, 2729-2741.
    Flora, A., Klisch, T.J., Schuster, G., and Zoghbi, H.Y. (2009). Deletion of Atoh1 disrupts Sonic Hedgehog signaling in the developing cerebellum and prevents medulloblastoma. Science 326, 1424-1427.
    Goncalves, J.T., Schafer, S.T., and Gage, F.H. (2016). Adult Neurogenesis in the Hippocampus: From Stem Cells to Behavior. Cell 167, 897-914.
    Gorman, A.M. (2008). Neuronal cell death in neurodegenerative diseases: recurring themes around protein handling. J Cell Mol Med 12, 2263-2280.
    Gronemeyer, T., Wiese, S., Grinhagens, S., Schollenberger, L., Satyagraha, A., Huber, L.A., Meyer, H.E., Warscheid, B., and Just, W.W. (2013). Localization of Rab proteins to peroxisomes: a proteomics and immunofluorescence study. FEBS Lett 587, 328-338.
    Hollands, C., Bartolotti, N., and Lazarov, O. (2016). Alzheimer's Disease and Hippocampal Adult Neurogenesis; Exploring Shared Mechanisms. Front Neurosci 10, 178.
    Katoh, Y., and Katoh, M. (2009). Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med 9, 873-886.
    Lian, I., Kim, J., Okazawa, H., Zhao, J., Zhao, B., Yu, J., Chinnaiyan, A., Israel, M.A., Goldstein, L.S., Abujarour, R., et al. (2010). The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev 24, 1106-1118.
    Lim, S., and Kaldis, P. (2013). Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140, 3079-3093.
    Lin, Y.T., Ding, J.Y., Li, M.Y., Yeh, T.S., Wang, T.W., and Yu, J.Y. (2012). YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway. Exp Cell Res 318, 1877-1888.
    Liu, S., Dontu, G., Mantle, I.D., Patel, S., Ahn, N.S., Jackson, K.W., Suri, P., and Wicha, M.S. (2006). Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66, 6063-6071.
    Martin, S., Driessen, K., Nixon, S.J., Zerial, M., and Parton, R.G. (2005). Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J Biol Chem 280, 42325-42335.
    Ming, G.L., and Song, H. (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70, 687-702.
    Nunez-Parra, A., Pugh, V., and Araneda, R.C. (2011). Regulation of adult neurogenesis by behavior and age in the accessory olfactory bulb. Mol Cell Neurosci 47, 274-285.
    Ozeki, S., Cheng, J., Tauchi-Sato, K., Hatano, N., Taniguchi, H., and Fujimoto, T. (2005). Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 118, 2601-2611.
    Paul, A., Chaker, Z., and Doetsch, F. (2017). Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis. Science 356, 1383-1386.
    Tremblay, A.M., and Camargo, F.D. (2012). Hippo signaling in mammalian stem cells. Semin Cell Dev Biol 23, 818-826.
    Vazquez-Martinez, R., Cruz-Garcia, D., Duran-Prado, M., Peinado, J.R., Castano, J.P., and Malagon, M.M. (2007). Rab18 inhibits secretory activity in neuroendocrine cells by interacting with secretory granules. Traffic 8, 867-882.
    Wu, B., Qi, R., Liu, X., Qian, L., and Wu, Z. (2018). Rab18 overexpression promotes proliferation and chemoresistance through regulation of mitochondrial function in human gastric cancer. Onco Targets Ther 11, 7805-7820.
    Xu, D., Li, Y., Wu, L., Li, Y., Zhao, D., Yu, J., Huang, T., Ferguson, C., Parton, R.G., Yang, H., et al. (2018). Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. J Cell Biol 217, 975-995.
    Zehmer, J.K., Huang, Y., Peng, G., Pu, J., Anderson, R.G., and Liu, P. (2009). A role for lipid droplets in inter-membrane lipid traffic. Proteomics 9, 914-921.
    Zhang, N., Bai, H., David, K.K., Dong, J., Zheng, Y., Cai, J., Giovannini, M., Liu, P., Anders, R.A., and Pan, D. (2010). The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell 19, 27-38.
    Zhao, B., Tumaneng, K., and Guan, K.L. (2011). The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol 13, 877-883.
    Zhou, Y., Huang, T., Cheng, A.S., Yu, J., Kang, W., and To, K.F. (2016). The TEAD Family and Its Oncogenic Role in Promoting Tumorigenesis. Int J Mol Sci 17.
    Ming-Yang Li, Yun-Ju Lai, Jui-Chen Tsai, Jenn-Yah Yu, Tsu-Wei Wang. (2019). YAP Mediates TRIP6-Promoted Neural Stem Cell Maintenance in the Postnatal Mammalian Subventricular Zone-Olfactory Pathway. PhD thesis.
    Hung, Tsu-Wei Wang. (2018). Rab18 Regulates Adult Neurogenesis, Maternal Behaviors and Anti-anxiety in Postpartum Mice through Prolactin. thesis.
    Huang, Tsu-Wei Wang. (2018). Rab18 Negatively Regulates Dopamine to Induce Adult Neurogenesis and Maternal Behaviors in Postpartum Mice. thesis.

    無法下載圖示 本全文未授權公開
    QR CODE