研究生: |
謝漱石 Hsieh, Shu-Shih |
---|---|
論文名稱: |
Effects of Acute Exercise and Age on Inhibitory Control: A Combined ERP and Source Localization Study Effects of Acute Exercise and Age on Inhibitory Control: A Combined ERP and Source Localization Study |
指導教授: |
洪聰敏
Hung, Tsung-Min 張育愷 Chang, Yu-Kai |
學位類別: |
博士 Doctor |
系所名稱: |
體育學系 Department of Physical Education |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 86 |
中文關鍵詞: | 有氧運動 、Stroop測驗 、P3 、N450 、LORETA |
英文關鍵詞: | aerobic exercise, Stroop test, P3, N450, LORETA |
DOI URL: | http://doi.org/10.6345/DIS.NTNU.DPE.050.2018.F03 |
論文種類: | 學術論文 |
相關次數: | 點閱:229 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的為二: (一) 檢驗年齡是否影響急性運動對抑制控制的行為與電生理表現之效益;及 (二) 了解運動促進抑制控制表現的神經基質,並檢驗年齡是否影響該神經基質。本研究招募24位年輕男性 (平均年齡 = 24.0 ± 3.1 年) 及20位老年男性 (平均年齡 = 70.0 ± 3.3 年)。參與者以對抗平衡次序方式從事一次急性運動情境 (強度為 50-70%的心跳保留值) 與一次影片情境,其後使用Stroop叫色測驗進行抑制控制表現測量,同時進行認知行為與事件關聯電位的資料收集。行為表現的參數包含反應時間、反應正確率;事件關聯電位的參數則包含P3與N450成分波,另以sLORETA作為腦波源分析之工具。本研究結果顯示,急性運動能縮短參與者的反應時間,其效益不受認知作業的難度或參與者年齡所影響;作業難度對於反應時間產生的干擾於運動後有所減少,其效益不受年齡所影響。事件關聯電位部分,急性運動誘發較大的P3振幅並降低N450的振幅,其效益不受作業難度或年齡所影響。源分析部分,急性運動誘發年輕人大腦左側外側前額葉及前扣帶迴的活化;老年人則是於運動後於右半腦外側前額葉產生活化,伴隨前扣帶迴活化的降低。根據上述結果,本研究建議年輕人與老年人於急性運動後可能獲得相似的提升效益,惟其潛在的神經基質則因年齡有所不同。
The purposes of the current study were two-fold: (a) to examine whether age affects the acute exercise-elicited effect on behavioral and neuroelectric correlates of Stroop performance; and (b) to explore the neural substrates underlie the acute exercise-elicited effect, and how these substrates were affected by age. Twenty-four young males (Meanage = 24.0 ± 3.1 years) and 20 old males (Meanage = 70.0 ± 3.3 years) were recruited. Participants underwent a single bout of aerobic exercise (intensity at 50-70% of HRreserve) or a video condition in counter-balanced order. Afterwards, participants were administered with a Stroop color-word test, with concurrent collection of behavioral and event-related potential (ERP) data. Reaction times (RT), response accuracy, and Stroop interference (SI) in RT and accuracy were recorded and calculated as behavioral indices; the P3 and N450 component from ERP were selected as neuroelectric correlates. Additionally, a standardized low-resolution brain electromagnetic tomography (sLOREATA) was utilized as source localization analysis. The results revealed that acute exercise resulted in shorter RT regardless of congruency and age. A smaller SI in RT was also observed following exercise. Regarding ERPs, acute exercise resulted in larger P3 amplitude and smaller N450 amplitude regardless of congruency and age. With respect to source localization, acute exercise exclusively activated the lateral prefrontal cortex (PFC) and anterior cingulate cortex (ACC) in left hemisphere in young adults whereas acute exercise activated the lateral PFC in right hemisphere and deactivated the ACC in old adults. Taken together, the current findings suggest that while acute exercise facilitates inhibitory control in young and old adults in a similar manner, the neural substrates underlying the relationship are different.
Alves, C. R., Gualano, B., Takao, P. P., Avakian, P., Fernandes, R. M., Morine, D., & Takito, M. Y. (2012). Effects of acute physical exercise on executive functions: A comparison between aerobic and strength exercise. Journal of Sport & Exercise Psychology, 34, 539–549.
Anderson, M. C., & Levy, B. (2009). Suppressing unwanted memories. Current Directions in Psychological Science, 18, 189–194.
Anguera, J. A., & Gazzaley, A. (2012). Dissociation of motor and sensory inhibition processes in normal aging. Clinical Neurophysiology, 123, 730–740.
Arcelin, R., Delignieres, D., & Brisswalter, J. (1998). Selective effects of physical exercise on choice reaction processes. Perceptual and Motor Skills, 87, 175–185.
Audiffren, M. (2009). Acute exercise and psychological function: A cognitive-energetics approach. In: T. McMorris, P. D. Tomporowski & M. Audiffren (Eds.), Exercise and Cognitive Function (pp. 3–39). Hoboken, NJ: John Wiley & Sons.
Bailey, C. E. (2007). Cognitive accuracy and intelligent executive function in the brain and in business. Annuals of the New York Academy of Science, 1118, 122–141.
Baler, R. D., & Volkow, N. D. (2006). Drug addiction: The neurobiology of disrupted self-control. Trends in Molecular Medicine, 12, 559–566.
Banich, M. T., Milham, M. P., Atchley, R. A., Cohen, N. J., Webb, A., Wszalek, T., ... & Shah, C. (2000). Prefrontal regions play a predominant role in imposing an attentional ‘set’: Evidence from fMRI. Cognitive Brain Research, 10, 1–9.
Banich, M. T., Milham, M. P., Jacobson, B. L., Webb, A., Wszalek, T., Cohen, N. J., & Kramer, A. F. (2001). Attentional selection and the processing of task-irrelevant information: Insights from fMRI examinations of the Stroop task. Progress in Brain Research, 134, 459–470.
Bobb, D. S., Adinoff, B., Laken, S. J., McClintock, S. M., Rubia, K., Huang, H. W., ... & Gopinath, K. (2012). Neural correlates of successful response inhibition in unmedicated patients with late-life depression. The American Journal of Geriatric Psychiatry, 20, 1057–1069.
Borg, G. A. (1982). Psychological bases of perceived exertion. Medicine & Science in Sports & Exercise, 14, 377–381.
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.
Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8, 539–546.
Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16, 106–113.
Brett, M., Johnsrude, I. S., & Owen, A. M. (2002). The problem of functional localization in the human brain. Nature Reviews Neuroscience 3, 243–249.
Brown, J. P., Sollers III, J. J., Thayer, J. F., Zonderman, A. B., & Waldstein, S. R. (2009). Blood pressure reactivity and cognitive function in the Baltimore Longitudinal Study of Aging. Health Psychology, 28, 641–646.
Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychology and Aging, 17, 85–100.
Cameron, T. A., Lucas, S. J., & Machado, L. (2015). Near‐infrared spectroscopy reveals link between chronic physical activity and anterior frontal oxygenated hemoglobin in healthy young women. Psychophysiology, 52, 609–617.
Carlson, S. A., Densmore, D., Fulton, J. E., Yore, M. M., & Kohl III, H. W. (2009). Differences in physical activity prevalence and trends from 3 US surveillance systems: NHIS, NHANES, and BRFSS. Journal of Physical Activity & Health, 6, S18–S27.
Caspersen, C. J., Powell, K. E., & Christenson, G. M. (1985). Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Reports, 100, 126–131.
Chang, Y. K., Alderman, B. L., Chu, C. H., Wang, C. C., Song, T. F., & Chen, F. T. (2017). Acute exercise has general facilitative effect on cognitive function: A combined ERP dynamics and BDNF study. Psychophysiology, 54, 289–300.
Chang, Y. K., Chu, C. H., Wang, C. C., Song, T. F., & Wei, G. X. (2015). Effect of acute exercise and cardiorespiratory fitness on cognitive function: An event-related cortical desynchronization study. Psychophysiology, 52, 342–351.
Chang, Y. K., Chu, C. H., Wang, C. C., Wang, Y. C., Fong, D. Y., Tsai, C. L., & Etnier, J. L. (2015). Dose-response relation between exercise duration and cognition. Medicine & Science in Sports & Exercise, 47, 159–165.
Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87–101.
Chang, Y. K., Huang, C. J., Chen, K. F., & Hung, T. M. (2013). Physical activity and working memory in healthy older adults: an ERP study. Psychophysiology, 50, 1174–1182.
Chen, A., Bailey, K., Tiernan, B. N., & West, R. (2011). Neural correlates of stimulus and response interference in a 2–1 mapping Stroop task. International Journal of Psychophysiology, 80, 129–138.
Chen, T., Kendrick, K. M., Feng, C., Sun, S., Yang, X., Wang, X., ... & Gong, Q. (2016). Dissociable early attentional control mechanisms underlying cognitive and affective conflicts. Scientific Reports, 6: 37633.
Chu, C. H., Chen, A. G., Hung, T. M., Wang, C. C., & Chang, Y. K. (2015). Exercise and fitness modulate cognitive function in older adults. Psychology and Aging, 30, 842–848.
Chu, C. H., Kramer, A. F., Song, T. F., Wu, C. H., Hung, T. M., & Chang, Y. K. (2017). Acute exercise and neurocognitive development in preadolescents and young Adults: An ERP study. Neural Plasticity. doi:10.1155/2017/2631909
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Earlbaum Associates.
Dai, C. T., Chang, Y. K., Huang, C. J., & Hung, T. M. (2013). Exercise mode and executive function in older adults: an ERP study of task-switching. Brain and Cognition, 83, 153–162.
Davranche, K., Burle, B., Audiffren, M., & Hasbroucq, T. (2006). Physical exercise facilitates motor processes in simple reaction time performance: An electromyographic analysis. Neuroscience Letters, 396, 54–56.
Davydov, D. M., Stewart, R., Ritchie, K., & Chaudieu, I. (2012). Depressed mood and blood pressure: The moderating effect of situation-specific arousal levels. International Journal of Psychophysiology, 85, 212–223.
De Menezes, K. J., Peixoto, C., Nardi, A. E., Carta, M. G., Machado, S., & Veras, A. B. (2016). Dehydroepiandrosterone, its sulfate and cognitive functions. Clinical Practice and Epidemiology in Mental Health, 12: 24.
Department of Health and Human Services. (1996). Physical Activity and Health: A Report of the Surgeon General. Atlanta, GA.
Deutch, A. Y., & Roth, R. H. (1990). The determinants of stress-induced activation of the prefrontal cortical dopamine system. Progress in Brain Research, 85, 367–403.
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168.
Dimitrova, J., Hogan, M., Khader, P., O’Hora, D., Kilmartin, L., Walsh, J. C., ... & Anderson-Hanley, C. (2017). Comparing the effects of an acute bout of physical exercise with an acute bout of interactive mental and physical exercise on electrophysiology and executive functioning in younger and older adults. Aging Clinical and Experimental Research, 29, 959–967.
Duncan-Johnson, C. C. (1981). P300 latency: A new metric of information processing. Psychophysiology, 18, 207–215.
Eakin, L., Minde, K., Hechtman, L., Ochs, E., Krane, E., Bouffard, R., …Looper, K. (2004). The marital and family functioning of adults with ADHD and their spouses. Journal of Attention Disorders, 8, 1–10.
Ebbeling, C. B., Ward, A., Puleo, E. M., Widrick, J., & Rippe, J. M. (1992). Development of a single-stage submaximal treadmill walking test. Medicine & Science in Sports & Exercise, 23, 966–973.
Ekkekakis, P., Hall, E. E., VanLanduyt, L. M., & Petruzzello, S. J. (2000). Walking in (affective) circles: Can short walks enhance affect? Journal of Behavioral Medicine, 23, 245–275.
Ensari, I., Greenlee, T. A., Motl, R. W., & Petruzzello, S. J. (2015). Meta‐analysis of acute exercise effects on state anxiety: An update of randomized controlled trials over the past 25 years. Depression and Anxiety, 32, 624–634.
Etnier, J. L., & Chang, Y. K. (2009). The effect of physical activity on executive function: a brief commentary on definitions, measurement issues, and the current state of the literature. Journal of Sport & Exercise Psychology, 31, 469–483.
Fabiani, M., Gratton, G., & Federmeier, K. D. (2007). Event-related brain potentials: methods, theory, and applications. In J.Cacioppo, L. G.Tassinary, & G. G.Berntson (Eds.), The Handbook of Psychophysiology (3rd ed., pp. 85–119). New York: Cambridge University Press.
Feroz, F. S., Leicht, G., Steinmann, S., Andreou, C., & Mulert, C. (2017). The time course of activity within the dorsal and rostral-ventral anterior cingulate cortex in the emotional Stroop task. Brain Topography, 30, 30–45.
Finlay, J. M., & Zigmond, M. J., & Abercrombie, E. D. (1995). Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: Effects of diazepam. Neuroscience, 64, 619–628.
Grenhoff, J., Nisell, M., Ferré, S., Aston-Jones, G., & Svensson, T. H. (1993). Noradrenergic modulation of dopamine cell firing elicited by stimulation of the locus coeruleus in the rat. Journal of Neural Transmission, General Section, 93, 11–25.
Hallal, P. C., Andersen, L. B., Bull, F. C., Guthold, R., Haskell, W., Ekelund, U., & Lancet Physical Activity Series Working Group. (2012). Global physical activity levels: Surveillance progress, pitfalls, and prospects. The Lancet, 380, 247–257.
Handy, T. (2005). Basic principles of ERP quantification. In T.C.Handy (Ed.), Event-related Potentials: A Methods Handbook (pp. 33-55). Cambridge, MA: MIT Press.
Hanslmayr, S., Pastötter, B., Bäuml, K. H., Gruber, S., Wimber, M., & Klimesch, W. (2008). The electrophysiological dynamics of interference during the Stroop task. Journal of Cognitive Neuroscience, 20, 215–225.
Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 22, pp. 193 – 225). New York: Academic.
Heaney, J. L., Carroll, D., & Phillips, A. C. (2013). DHEA, DHEA-S and cortisol responses to acute exercise in older adults in relation to exercise training status and sex. Age, 35, 395–405.
Henriksen, E. J. (2002). Invited review: Effects of acute exercise and exercise training on insulin resistance. Journal of Applied Physiology, 93, 788–796.
Hillman, C. H., Erickson, K. I., & Hatfield, B. D. (2017). Run for your life! Childhood physical activity effects on brain and cognition. Kinesiology Review, 6, 12–21.
Hong, X., Sun, J., Bengson, J. J., & Tong, S. (2014). Age-related spatiotemporal reorganization during response inhibition. International Journal of Psychophysiology, 93, 371–380.
Hoyt, L. T., Craske, M. G., Mineka, S., & Adam, E. K. (2015). Positive and negative affect and arousal: Cross-sectional and longitudinal associations with adolescent cortisol diurnal rhythms. Psychosomatic Medicine, 77, 392–401.
Hsieh, S. S., Chang, Y. K., Fang, C. L., & Hung, T. M. (2016). Acute resistance exercise facilitates attention control in adult males without an age-moderating effect. Journal of Sport & Exercise Psychology, 38, 247–254.
Hsieh, S. S., Chang, Y. K., Hung, T. M., & Fang, C. L. (2016). The effects of acute resistance exercise on young and older males' working memory. Psychology of Sport and Exercise, 22, 286–293.
Huang, C. J., Lin, P. C., Hung, C. L., Chang, Y. K., & Hung, T. M. (2014). Type of physical exercise and inhibitory function in older adults: An event-related potential study. Psychology of Sport and Exercise, 15, 205–211.
Hyodo, K., Dan, I., Suwabe, K., Kyutoku, Y., Yamada, Y., Akahori, M., …Soya, H. (2012). Acute moderate exercise enhances compensatory brain activation in older adults. Neurobiology of Aging, 33, 2621–2632.
Johnson, L., Addamo, P. K., Selva Raj, I., Borkoles, E., Wyckelsma, V., Cyarto, E., & Polman, R. C. (2016). An acute bout of exercise improves the cognitive performance of older adults. Journal of Aging and Physical Activity, 24, 591–598.
Kamijo, K., Nishihira, Y., Hatta, A., Kaneda, T., Kida, T., Higashiura, T., & Kuroiwa, K. (2004). Changes in arousal level by differential exercise intensity. Clinical Neurophysiology, 115, 2693–2698.
Kamijo, K., Nishihira, Y., Higashiura, T., & Kuroiwa, K. (2007). The interactive effect of exercise intensity and task difficulty on human cognitive processing. International Journal of Psychophysiology, 65, 114–121.
Killikelly, C., & Szűcs, D. (2013). Asymmetry in stimulus and response conflict processing across the adult lifespan: ERP and EMG evidence. Cortex, 49, 2888–2903.
Kinoumura, S., Larsson, B., Gulyás, B., & Roland, P. E. (1996). Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science, 271, 312–315.
Kousaie, S., & Phillips, N. A. (2017). A behavioural and electrophysiological investigation of the effect of bilingualism on aging and cognitive control. Neuropsychologia, 94, 23–35.
Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Research, 1341, 12–24.
Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., …Fox, P. T. (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10, 120–1311.
Larson, M. J., Clayson, P. E., & Clawson, A. (2014). Making sense of all the conflict: A theoretical review and critique of conflict-related ERPs. International Journal of Psychophysiology, 93, 283–297.
Larson, M. J., Kaufman, D. A., & Perlstein, W. M. (2009). Neural time course of conflict adaptation effects on the Stroop task. Neuropsychologia, 47, 663–670.
Law, R., Evans, P., Thorn, L., Hucklebridge, F., & Clow, A. (2015). The cortisol awakening response predicts same morning executive function: Results from a 50-day case study. Stress, 18, 616–621.
Lee, I. M., Shiroma, E. J., Lobelo, F., Puska, P., Blair, S. N., Katzmarzyk, P. T., …Wells, J. C. (2012). Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. The Lancet, 380, 219–229.
Liotti, M., Woldorff, M. G., Perez, R., & Mayberg, H. S. (2000). An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia, 38, 701–711.
Liou, Y. M., Jwo, C. J. C., Yao, K. G., Chiang, L. C., & Huang, L. H. (2008). Selection of appropriate Chinese terms to represent intensity and types of physical activity terms for use in the Taiwan version of IPAQ. The Journal of Nursing Research, 16, 252–263.
Lohne-Seiler, H., Hansen, B. H., Kolle, E., & Anderssen, S. A. (2014). Accelerometer-determined physical activity and self-reported health in a population of older adults (65–85 years): A cross-sectional study. BMC Public Health, 14, 284.
Luck, S. J. (2014). An Introduction to the Event-related Potential Technique (2nd ed.). Cambridge, MA: MIT Press.
Ludyga, S., Gerber, M., Brand, S., Holsboer-Trachsler, E., & Pühse, U. (2016). Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology, 53, 1611–1626.
MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835-1838.
MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163–203.
Mager, R., Bullinger, A. H., Brand, S., Schmidlin, M., Schärli, H., Müller-Spahn, F., ... & Falkenstein, M. (2007). Age-related changes in cognitive conflict processing: An event-related potential study. Neurobiology of Aging, 28, 1925–1935.
Manard, M., Carabin, D., Jaspar, M., & Collette, F. (2014). Age-related decline in cognitive control: The role of fluid intelligence and processing speed. BMC Neuroscience, 15, 7.
Manard, M., François, S., Phillips, C., Salmon, E., & Collette, F. (2017). The neural bases of proactive and reactive control processes in normal aging. Behavioral Brain Research, 320, 504–516.
Markela-Lerenc, J., Ille, N., Kaiser, S., Fiedler, P., Mundt, C., & Weisbrod, M. (2004). Prefrontal-cingulate activation during executive control: which comes first? Cognitive Brain Research, 18, 278–287.
Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., …Mazoyer, B. (2001). A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philosophical Transactions of the Royal Society B: Biological Sciences, 356, 1293–1322.
McGaugh, J. L., Cahill, L., & Roozendaal, B. (1996). Involvement of the amygdala in memory storage: Interaction with other brain systems. Proceedings of the National Academy of Sciences in the United States of America, 93, 13508–13514.
McMorris, T. (2016). Developing the catecholamines hypothesis for the acute exercise-cognition interaction in humans: Lessons from animal studies. Physiology & Behavior, 165, 292–299.
McMorris, T., & Hale, B. (2015). Is there an acute exercise-induced physiological/biochemical threshold which triggers increased speed of cognitive functioning? A meta-analytic review. Journal of Sport and Health Science, 4, 4–13.
Milham, M. P., Erickson, K. I., Banich, M. T., Kramer, A. F., Webb, A., Wszalek, T., & Cohen, N. J. (2002). Attentional control in the aging brain: Insights from an fMRI study of the stroop task. Brain and Cognition, 49, 277–296.
Miller, E. K. (2000). The prefrontal cortex and cognitive control. Nature Reviews Neuroscience, 1, 59–65.
Miyashita, T., & Williams, C. L. (2006). Epinephrine administration increases neural impulses propagated along the vagus nerve: Role of peripheral beta-adrenergic receptors. Neurobiology of Learning and Memory , 85, 116–124.
Nichols, T. E., & Holmes, A. P. (2001). Nonparametric permutation tests of functional neuroimaging: A primer with examples. Human Brain Mapping, 15, 1–25.
Olejniczak, P. (2006). Neurophysiologic basis of EEG. Journal of Clinical Neurophysiology, 23, 186–189.
Ovaysikia, S., Chan, J. L., Tahir, K., & DeSouza, J. F. (2011). Word wins over face: emotional Stroop effect activates the frontal cortical network. Frontiers in Human Neuroscience, 4: 234.
Pardo, J. V., Pardo, P. J., Janer, K. W., & Raichle, M. E. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences, 87, 256–259.
Pascual-Marqui, R. D., Esslen, M., Kochi, K., & Lehmann, D. (2002). Functional imaging with low-resolution brain electromagnetic tomography (LORETA): A review. Methods and Findings in Experimental and Clinical Pharmacology, 24, 91–95.
Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods & Findings in Experimental & Clinical Pharmacology, 24(Suppl. D), 5–12.
Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128–2148.
Polich, J., & Kok, A. (1995). Cognitive and biological determinants of P300: An integrative review. Biological Psychology, 41, 103–146.
Ponjee, G. A., De, H. R., & Vader, H. L. (1994). Androgen turnover during marathon running. Medicine & Science in Sports & Exercise, 26, 1274–1277.
Posner, M. I., & DiGirolamo, G. J. (1998). Executive attention: Conflict, target detection, and cognitive control. In: R. Parasuraman (Ed.), The Attentive Brain (pp. 401–23). Cambridge, MA: MIT Press.
Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive control. In R. L. Solso (Ed.), Information Processing and Cognition: The Loyola Symposium: Lawrence Erlbaum.
Postle, B. R., Brush, L. N., & Nick, A. M. (2004). Prefrontal cortex and the mediation of proactive interference in working memory. Cognitive, Affective, and Behavioral Neuroscience, 4, 600–608.
Pulopulos, M. M., Hidalgo, V., Puig-Perez, S., & Salvador, A. (2016). Cortisol awakening response and cognitive performance in hypertensive and normotensive older people. Hormones and Behavior, 83, 75–82.
Raaijmakers, J. G. W., & Jakab, E. (2013). Rethinking inhibition theory: On the problematic status of the inhibition theory for forgetting. Journal of Memory and Language, 68, 98–122.
Reuter, E. M., Voelcker-Rehage, C., Vieluf, S., Lesemann, F. P., & Godde, B. (2016). The P3 parietal-to-frontal shift relates to age-related slowing in a selective attention task. Journal of Psychophysiology. doi: 10.1027/0269-8803/a000167
Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17, 177–182.
Rossi, S., Miniussi, C., Pasqualetti, P., Babiloni, C., Rossini, P. M., & Cappa, S. F. (2004). Age-related functional changes of prefrontal cortex in long-term memory: A repetitive transcranial magnetic stimulation study. Journal of Neuroscience, 24(36), 7939–7944.
Roth, R. H., Tam, S. Y., Ida, Y., Yang, J. X., & Deutch, A. Y. (1988). Stress and the mesocorticolimbic dopamine systems. Annuals of the New York Academy of Science, 537, 138–147.
Sanders, A. F. (1983). Towards a model of stress and human performance. Acta Psychologica, 53, 61–97.
Semlitsch, H. V., Anderer, P., Schuster, P., & Presslich O. (1986). A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology, 23, 695–703.
Shi, X., Sun, X., Yao, Z., Yuan, Y., Wu, J., & Clow, A. (2018). The cortisol awakening response predicts response inhibition in the afternoon of the same day. Psychoneuroendocrinology, 89, 23–29.
Silton, R. L., Heller, W., Towers, D. N., Engels, A. S., Spielberg, J. M., Edgar, J. C., ... & Miller, G. A. (2010). The time course of activity in dorsolateral prefrontal cortex and anterior cingulate cortex during top-down attentional control. Neuroimage, 50, 1292–1302.
Song, Y., & Hakoda, Y. (2015). An fMRI study of the functional mechanisms of Stroop/reverse-Stroop effects. Behavioral Brain Research, 290, 187–196.
Speer, M. E., & Soldan, A. (2015). Cognitive reserve modulates ERPs associated with verbal working memory in healthy younger and older adults. Neurobiology of Aging, 36, 1424–1434.
Tillman, C. M., & Wiens, S. (2011). Behavioral and ERP indices of response conflict in Stroop and flanker tasks. Psychophysiology, 48, 1405–1411.
Tomporowski, P. D. (2003). Effects of acute bouts of exercise on cognition. Acta Psychologica, 112, 297–324.
Tsai, C. L., Wang, C. H., Pan, C. Y., Chen, F. C., Huang, S. Y., & Tseng, Y. T. (2016). The effects of different exercise types on visuospatial attention in the elderly. Psychology of Sport and Exercise, 26, 130–138.
Tsukamoto, H., Takenaka, S., Suga, T., Tanaka, D., Takeuchi, T., Hamaoka, T., ... & Hashimoto, T. (2017). Effect of exercise intensity and duration on postexercise executive function. Medicine & Science in Sports & Exercise, 49, 774–784.
Van Pelt, R. E., Dinneno, F. A., Seals, D. R., & Jones, P. P. (2001). Age-related decline in RMR in physically active men: Relation to exercise volume and energy intake. American Journal of Physiology- Endocrinology and Metabolism, 281, E633–E639.
Verleger, R. (1997). On the utility of P3 latency as an index of mental chronometry. Psychophysiology, 34, 131–156.
Villringer, A., & Chance, B. (1997). Non-invasive optical spectroscopy and imaging of human brain function. Trends in Neurosciences, 20, 435–442.
Wang, D., Zhou, C., Zhao, M., Wu, X., & Chang, Y. K. (2016). Dose–response relationships between exercise intensity, cravings, and inhibitory control in methamphetamine dependence: An ERPs study. Drug and Alcohol Dependence, 161, 331–339.
Warburton, D. E. R., Nicol, C. W., & Bredin, S. S. D. (2006). Health benefits of physical activity: The evidence. Canadian Medical Association Journal, 174, 801–809.
Wascher, E., Schneider, D., Hoffmann, S., Beste, C., & Sänger, J. (2012). When compensation fails: attentional deficits in healthy ageing caused by visual distraction. Neuropsychologia, 50, 3185–3192.
West, R., & Alain, C. (1999). Event-related neural activity associated with the Stroop task. Cognitive Brain Research, 8, 157–164.
West, R., Bailey, K., Tiernan, B. N., Boonsuk, W., & Gilbert, S. (2012). The temporal dynamics of medial and lateral frontal neural activity related to proactive cognitive control. Neuropsychologia, 50, 3450–3460.
World Health Organization. (2010a). Global recommendations on physical activity for health. Geneva, Switzerland.
World Health Organization. (2010b). Global status report on noncommunicable diseases 2010. Geneva, Switzerland.
Yanagisawa, H., Dan, I., Tsuzuki, D., Kato, M., Okamoto, M., Kyutoku, Y., Soya, H. (2010). Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. NeuroImage, 50, 1702–1710.
Zurrón, M., Lindín, M., Galdo-Alvarez, S., & Díaz, F. (2014). Age-related effects on event-related brain potentials in a congruence/incongruence judgment color-word Stroop task. Frontiers in Aging Neuroscience, 6:128.
Zurrón, M., Pouso, M., Lindín, M., Galdo, S., & Díaz, F. (2009). Event-related potentials with the Stroop colour-word task: Timing of semantic conflict. International Journal of Psychophysiology, 72, 246–252.