簡易檢索 / 詳目顯示

研究生: 張柏逢
Chang, Po-Feng
論文名稱: 使用自我支持式攪拌棒於摩擦攪拌銲接之接合特性研究
Study on the joint characteristics of friction stir welding using self-reacting tool
指導教授: 鄭慶民
Cheng, Ching-Min
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 113
中文關鍵詞: 自我支持式攪拌棒線筒軸形攪拌棒摩擦攪拌銲接鋁合金機械性質
英文關鍵詞: Self-reacting pin tool, bobbin tool, friction stir welding, aluminum alloy, mechanical properties
論文種類: 學術論文
相關次數: 點閱:93下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以鋁合金為研究對象,分兩部分進行研究:第一部分為使用自行設計的自我支持式攪拌棒(Self-reacting pin tool)或稱線筒軸形攪拌棒(Bobbin tool)對不同鋁合金材質進行摩擦攪拌銲接(Friction stir welding),在不使用外加熱源的情況下進行摩擦攪拌銲接,探討自我支持式攪拌棒對不同鋁合金的銲接可行性。第二部分承第一部分所實驗出來的結果,決定試片的材質,探討在固定銲接速度下,改變轉速,對其銲後的機械性質影響,再經由光學顯微鏡及掃描式電子顯微鏡觀察其顯微組織。
    本研究中利用自我支持式攪拌棒對鋁合金1050進行銲接,可成功接合鋁合金1050,隨著轉速的提高在金相顯微組織上類似沙漏狀結構的銲核區(Weld nugget zone, WNZ)會越來越明顯,而在銲核區的缺陷會隨著轉速的提高有明顯增加。隨著轉速的提高,在軟化區的硬度也跟著下降,其硬度均低於母材,但在銲核區硬度值會隨轉速提高而增加。在拉伸試驗中抗拉強度會隨著轉速提高而增加,而平均抗拉強度可達母材的59%。利用掃描式電子顯微鏡觀察拉伸試驗破斷後的破斷面,均為延性破壞。

    This study was divided into two parts. First, we used self-reacting pin tool (or could be known as a bobbin tool)which was designed by myself to weld different aluminum alloy by friction stir welding without any heat source, and discussed the possibility of welding. Second, according to experiments of first part, we decided the material of specimen and discussed the mechanical properties under various rotating speed at fixed welding speed. Last, the specimen was observed by metallographic test, optical microscope and scanning electron microscope.
    A 1050 aluminum alloy was friction stir welded by self-reacting pin tool. The geometry of the weld nugget zone (WNZ) obviously displayed saddle sharp with the increasing rotation speed. The defects in WNZ were significantly raising with the increasing welding speed. The values of microhardness at soft region were lower than base material and it decreased with the increasing welding speed, but the microhardness in WNZ was increased with increasing welding speed. Ultimate tensile strengths would be increased with increasing welding speed in the tensile tests. And the average ultimate tensile strength of specimen could reach 59% of the base material. The tensile fracture surfaces of the joints were analyzed by scaning electron microscope, as presented the ductile fracture mode.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究方法 2 第二章 文獻回顧 3 2.1 鋁合金特性及分類 3 2.1.1 鋁及鋁合金特性 3 2.1.2 鋁合金的分類 3 2.1.3 鋁合金1050的介紹 5 2.2 摩擦攪拌銲接 6 2.2.1 摩擦攪拌銲接原理 8 2.2.2 摩擦攪拌銲接的特性 10 2.2.3 摩擦攪拌銲接的接合方式 11 2.2.4 摩擦攪拌銲接之控制參數 12 2.3 摩擦攪拌棒 12 2.4 自我支持式攪拌棒 15 第三章 實驗方法與步驟 53 3.1 實驗設計流程 53 3.2 FSW實驗 55 3.2.1 實驗試片及前處理 55 3.2.2 攪拌棒之尺寸 56 3.2.3 銲接設備 58 3.3 自我支持式攪拌棒之清洗 60 3.4 顯微組織觀察 61 3.5 微硬度試驗 63 3.6 拉伸試驗 65 3.7 掃描式電子顯微鏡觀察與分析 66 第四章 結果與討論 68 4.1 FSW參數試驗 68 4.2 製程參數對銲道外觀的影響 78 4.3 顯微組織觀察 90 4.4 製程參數對銲道微硬度的影響 92 4.5 拉伸試驗 97 4.6 掃瞄式電子顯微鏡觀察 101 第五章 結論與建議 106 5.1 結論 106 5.2 建議 107 參考文獻 108

    1. 溫晉源,2024鋁合金熱裂性及異質銲接機械性質之研究,碩士論文,國立臺灣師範大學機電科技研究所,臺北、臺灣,2010。
    2. 鄭慶民,熱處理型鋁合金銲接性之研究,博士論文,國立交通大學機械工程學系,新竹、臺灣,2006。
    3. M.M. Shtrikman, “Trends in the development of the friction stir welding process”, Welding International, Vol. 29, No. 3, pp. 230-239, 2015.
    4. M.R. Johnsen “Friction stir welding takes off at Boeing”, Welding Journal, Vol. 78, No. 2, pp. 35-39, 1999.
    5. Yoshihiro Kusuda, “Honda develops robotized FSW technology to weld steel and aluminum and applied it to a mass-production vehicle”, Industrial Robot: An International Journal, Vol. 40, No. 3, pp. 208-212, 2013.
    6. 水村 武司、江角 昌邦,「日立製作所における鉄道車両への FSW(摩擦攪拌接合)適用と知財戦略」,特技懇 258号,pp.41-46,特許庁,日本,2010。
    7. Y.C. Chiou, C.T. Liu, R.T. Lee, “A pinless embedded tool used in FSSW and FSW of aluminum alloy”, Journal of Materials Processing Technology, Vol. 213, No. 11, pp. 1818-1824, 2013.
    8. Hao Wu, Ying-Chun Chen, David Strong, Phil Prangnell, “Stationary shoulder FSW for joining high strength aluminum alloys”, Journal of Materials Processing Technology, Vol. 221, No. 11, pp. 187-196, 2015.
    9. C. L. Campbell, M. S. Fullen, M. J. Skinner, US Patent No.6199745, March 2001.
    10. R. Edwards, G. Sylva, “Recent Advances in Welding of Aluminum Alloys Using a Self Reacting Pin Tool (SRPT) Approach with Application Examples", Trends In Welding Research: Proceedings of the 7th International Conference, pp.191-200, 2006.
    11. J. R. Davis., Aluminum and Aluminum Alloys-ASM Specialty Handbook. ASM International, 1993, pp. 645.
    12. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, C.J. Dawes, GB Patent Application No.9125978.8, Dec. 1991.
    13. 國防科工局發布222項航天行業標準(2011 年),航天標準化,2012年 第1期,46。
    14. L.H. Wu, B.L. Xiao, D.R. Ni, Z.Y. Ma, X.H. Li, M.J. Fu, Y.S. Zeng, “Achieving superior superplasticity from lamellar microstructure of a nugget in a friction-stir-welded Ti–6Al–4V joint", Scripta Materialia, Vol. 98 , pp. 44-47, 2015.
    15. Y. S. Sato, T. W. Nelson, C. J. Sterling, R. J. Steel, C. -O. Pettersson, “Microstructure and mechanical properties of friction stir welded SAF 2507 super duplex stainless steel”, Materials Science and Engineering: A, Vol. 397, No. 1-2, pp. 376-384, 2005.
    16. Ahmed, M. M. Z., Wynne, B. P., Martin, J. P., “Effect of friction stir welding speed on mechanical properties and microstructure of nickel based super alloy Inconel 718", Science and Technology of Welding and Joining ,Vol. 18 , pp. 680-687, 2013.
    17. Xiaoqian Ma, Stanley M. Howard, Bharat K. Jasthi, “ Friction Stir Welding of Bulk Metallic Glass Vitreloy 106a ", Journal of Manufacturing Science and Engineering , Vol. 136 , No. 5, pp.051012-1-051012-7, 2014.
    18. P. L. Threadgill, A. J. Leonard, H. R. Shercliff, P. J. Withers, “Friction stir welding of aluminium alloys", International Materials Reviews, Vol. 54, No. 2, pp.49-93, 2009.
    19. 林耀隆,摩擦攪拌銲接過程之作用力和攪拌能量之實驗研究,碩士論文,國立中山大學機械與機電工程學系,高雄、臺灣,2006。
    20. R.S. Mishraa, Z.Y. Ma, “Friction stir welding and processing", Materials Science and Engineering: R: Reports ,Vol.50 , pp.1-78, 2005.
    21. W. J. Arbegast, A. K. Patnaik, “Process Parameter Development and Fixturing Issues for Friction Stir Welding of Aluminum Beam Assemblies", SAE Technical Paper 2005-01-3333, 2005.
    22. Y. N. Zhang, X. Cao, S. Larose, P. Wanjara, “Review of tools for friction stir welding and processing”, Canadian Metallurgical Quarterly, Vol. 51, No.3, pp. 250-261, 2012.
    23. A. von Strombeck, J. Dos Santos, US Patent Pub. No. US 2002/0179673 A1, Dec. 2002.
    24. J. Hilgerta, H.N.B. Schmidtb, J.F. dos Santosa, N. Hubera,“Thermal models for Bobbin tool friction stir welding”, Journal of Materials Processing Technology, Vol. 22, No. 2, pp. 197-204, 2011.
    25. M. Skinner, R.L. Edwards, “Improvements to the FSW Process Using the Self-Reacting Technology”, Materials Science Forum, Vol. 426-432, pp. 2849-2854, 2003.
    26. A Toskey, W.J. Arbegast, C.D. Allen, and A. Patnaik, “Fabrication of Aluminum Box Beams Using Self-Reacting and Standard Fixed Pin Friction Stir Welding", Friction Stir Welding and Processing III,, pp. 171-178, 2005.

    27. G. Silva, R. Edwards, T. Sassa, “A Feasibility Study for Self Reacting Pin Tool Welding of Thin Section Aluminum”, Proceedings of the 5th International Symposium on Friction Stir Welding, Metz, France, September 2004.
    28. A. L. Lafly, D. Alléhaux, F. Marie, C. Dalle Donne, G. Biallas, “Microstructure and Mechanical Properties of the Aluminium Alloy 6056 Welded by Friction Stir Welding Techniques”, Welding in the World, Vol. 50, No. 11-12, pp. 98-106, 2006.
    29. T. Neumann, R. Zettler, P. Vilaca, J.F. dos Santos, L. Quintino, “Analysis of Self-Reacting Friction Stir Welds in a 2024-T351 Alloy", Friction Stir Welding and Processing IV, pp.55–72, 2007.
    30. W. M. Thomas, C. S. Wiesner, D. J. Marks and D. G. Staines, “Conventional and bobbin friction stir welding of 12% chromium alloy steel using composite refractory tool materials”, Science and Technology of Welding and Joining, Vol. 14, No. 3, pp.247-253, 2009.
    31. P L Threadgill, M M Z Ahmed, J P Martin, J G Perrett, B P Wynne, “The Use of Bobbin tools for Friction Stir Welding of Aluminium Alloys”, Materials Science Forum, Vol. 638-642, pp. 1179-1184, 2010.
    32. Tetsuro Sato, Toshiyuki Suda, “Finite Element Analysis of Friction Stir Welding Affected by Heat Conduction through the Welding Jig”, New Frontiers in Light Metals: Proceedings of the 11th International Aluminium Conference INALCO 2010, pp. 139-146, 2010.

    33. Y. X. Huang, L. Wan, S. X. Lv, J. C. Feng, “Novel design of tool for joining hollow extrusion by friction stir welding”, Science and Technology of Welding and Joining, Vol. 18, No. 3, pp. 239-246, 2013.
    34. H. J. Liu, J. C. Hou, H. Guo, “Effect of welding speed on microstructure and mechanical properties of self-reacting friction stir welded 6061-T6 aluminum alloy”, Materials & Design, Vol. 50, pp. 872-878, 2013.
    35. M. K. Sued, D. Pons, J. Lavroff, E. H. Wong, “Design features for bobbin friction stir welding tools: Development of a conceptual model linking the underlying physics to the production process”, Materials & Design, Vol. 54, pp. 632-643, 2014.
    36. McClure JC, Coronado E, Aloor S, Nowak BM, Murr LE, Nunes AC. Effect of pin tool shape on metal flow during friction stir welding. In: Trends in welding research, proceedings; 2003. pp. 257-261.
    37. Long Wan, Yongxian Huang, Zongliang Lv, Shixiong Lv, Jicai Feng, “Effect of self-support friction stir welding on microstructure and microhardness of 6082-T6 aluminum alloy joint”, Materials & Design, Vol. 55, pp. 197-203, 2014.
    38. J. C. Hou, H. J. Liu, Y. Q. Zhao, “Influences of rotation speed on microstructures and mechanical properties of 6061-T6 aluminum alloy joints fabricated by self-reacting friction stir welding tool”, The International Journal of Advanced Manufacturing Technology, Vol. 73, No. 5-8, pp. 1073-1079, 2014.

    39. Long Wan, Yongxian Huang, Weiqiang Guo, Shixiong Lv, Jicai Feng, “Mechanical Properties and Microstructure of 6082-T6 Aluminum Alloy Joints by Self-support Friction Stir Welding”, Journal of Materials Science & Technology, Vol. 30, No. 12, pp. 1243-1250, 2014.
    40. Huijie Zhang, Min Wang, Xiao Zhang, Guangxin Yang, “Microstructural characteristics and mechanical properties of Bobbin tool friction stir welded 2A14-T6 aluminum alloy”, Materials & Design, Vol. 65, pp. 559-566, 2015.
    41. J. Hilgert, “Knowledge Based Process Development of Bobbin tool Friction Stir Welding”, PhD dissertation, Technische Universität Hamburg-Harburg, Harburg, Hamburg, Germany, 2012.
    42. ASTM Standard B491/B491M - 15
    43. ASTM Standard E407 - 07ε1
    44. ASTM Standard E384 - 11ε1
    45. ASTM Standard E8/E8M - 13
    46. ASTM Standard B918/B918M - 09

    下載圖示
    QR CODE