研究生: |
余宗駿 Tzung-Jiun Yu |
---|---|
論文名稱: |
具溫度效應之鋰電池動態模型建立 The real-time modeling of lithium battery with thermal effect |
指導教授: |
洪翊軒
Hung, Yi-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 鋰電池 、類神經網路 、溫度效應 、倒傳遞演算法 、綠能動力 |
英文關鍵詞: | lithium battery, neural network, thermal effect, back propagation, green power source |
論文種類: | 學術論文 |
相關次數: | 點閱:257 下載:29 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文目的為研究與建立具有溫度效應之鋰電池即時動態模型。研究中使用3.2V/11.5Ah之磷酸鋰鐵電池。本研究主要分為三階段;第一階段為熱動態響應量測;透過二步驟量測法,在不同電池操作溫度下,依照電池在恆溫室中絕緣與一般對流,可求得電池單元之比熱與熱對流係數。第二階段為電池等效電路特性量測。主要作法為透過交流阻抗(AC Impedance)技術,在頻率0.1-1000 Hz的範圍下,針對不同溫度( 10、20 、30 、40 )、不同放電電流(0.5C、1C、2C)、不同電池電量(state-of-charge,SOC),進行等效電路之元件參數量測。第三步驟為建立具溫度動態之高非線性電池即時模型;透過一具有隱藏層(hidden layer)之類神經網路,將電池溫度、SOC作為網路之2變數輸入向量,等效電路參數值(三電阻、一電容)作為網路之4變數輸出向量。經過倒傳遞法(back propagation)之神經元權重(weighting)訓練後,便可求得代表目標鋰電池之即時模擬等效電路。本模型未來可供系統整合與載具車應用。
This thesis aims at studying the real-time dynamic model of a lithium battery with thermal effect. We employed a 3.2V/11.5Ah lithium-iron-phosphate battery for our research. This research is separated into three stages. The first stage is to measure the thermal dynamics. By using a two-step measurement method, the heat capacity and heat transfer coefficient under various temperatures can be derived by tested under adiabatic and normal conditions in an incubator. The second stage is for the characteristics of the equivalent circuit of the cell. By using the AC impedance technique, within the frequency of interest within 0.1-1000 Hz, parameters of the equivalent circuit were measured under various temperatures (10, 20, 30, 40), various discharge currents (0.5C, 1C, 2C) and various battery state-of-charge. The third step is to establish a highly-nonlinear real-time model with thermal dynamics. By adopting a neural network with hidden layers, the battery temperature and SOC were two variables for the input vector, while the values of parameters (2 resistance, 1 inductance and 2 capacitors) formed a 5-variable output vector. The neural-network weights were trained by the back-propagation method. Hence, an electric circuit for real-time simulation of the target lithium battery was derived. This research provides the further applications for battery system integration and the vehicle integrations.
[1]經濟部能源局,油價資訊管理與分析系統。http://210.69.152.10/oil102/
[2][Source: http://en.wikipedia.org/wiki/Rechargeable_battery]維基百科
[3]Pop V., Berveld H. J., Notten P. H. L. and
Regtien P. P. L., 2005, “State-of-the-art of battery
state-of-charge determination,” Measurement science and
Technology, Vol.16, p.p. 93-110.
[4]Barsoukov E., Macdonald J. R., 2005, Impedance
Spectroscopy Theory, Experiment, and Application, Second
Edition; John Wiley & Sons
[5]C. R. Pals and J. Newman,”Thermal Modeling of the
Lithium Polymer Battery: 11. Temperature Profiles in a
Cell Stack,” Journal of Electrochem. Soc., vol.142,
pp.3282, 1995.
[6]P. Suresh, A.K Shukla, N Munichandriah, 2002,
“Temperature dependence studies of a.c. impedance of
lithium-ion cells,” Journal of Applied
Electrochemistry, Vol. 32, p.p. 267-273.
[7]A Simplified Version of the Federal Urban Driving
Schedule for Electric Vehicle Buttery Testing. Electric
& Hybrid Propulsion Battery Test Working Force, EG&G,
Idaho, Inc., DOE/ID-10146, 1988.
[8]Stephan Buller, Marc Thele, Eckhard Karden, “Impedance-
based non-linear dynamic battery modeling for automotive
applications,” Journal of Power Sources, vol. 113,
pp.422-430, 2003.
[9]M.D. Levi, K. Gamolsky, D. Aurbach, U. Heider, R.
Oesten, On “Electrochemical impedance measurements of
LixCo0.2Ni0.8O2 and LixNiO2 intercalation electrodes,”
Electrochim. Acta 45,pp.1781-1789, 2000.
[10]J. Vetter, P. Novak, M. Wanger, C. Veit, K.-C. Moller,
J. Besenhard, M. Winter, M. Wohlfafahrt-Mehrens, C.
Volger, A. Hammouche, “Ageing mechanisms in lithium-
ion batteries,” J. Power Sources, pp.269-
281,vol.147,2005.
[11]J. Li, E. Murphy, J. Winnick, P.A. Kohl, “Studies on
the cycle life of commercial lithium ion batteries
during rapid charge–discharge cycling ,”J. Power
Sources, vol.102 pp.294–301, 2001.
[12]G. Ning, B. Haran, B.N. Popov, “Capacity fade study of
lithium-ion batteries cycled at high discharge
rates,”J. Power Sources, vol.117 pp.160–169, 2003.
[13]J. Gerschler, D.U. Sauer, EET-2007 European Ele-Drive
Conference, Bruxelles, 2007.
[14]Electric Vehicle Battery Test Procedures Manual, United
States Advanced Battery Consortium. July, 1994.
[15]P. A. Nelson, V. S. Battaglia, and G. L.
Henriksen, “Thermal Control of Electric Vehicle
Batteries”, The American Society of Mechanical
Engineers, Vol. 3, pp.267-270, 1995.
[16]D. F. Gosden, “Battery Requirements for Electric
Vehicles,” Journal of Power Sources, pp.45-61, 1993.
[17]G. G. Botte, V. R. Subramanian, and R. E. White,
Journal of Electrochem. Acta. 45, 2595 .Thermal
Modeling, 2000.
[18]S. V. Patankar, Numerical Heat Transfer and Fluid Flow,
Hemisphere Publishing Corporation, New York 1980.
[19]D. Andre, M. Meiler, K. Steiner, Ch. Wimmer, T. Soczka-
Guth, D.U. Sauer, 2011, “Characterization of high-
power lithium-ion batteries by electrochemical
impedance spectroscopy. I. Experimental
inverstigation,” Journal of Power Sources, vol. 196,
pp. 5334-5341
[20]D. Andre, M. Meiler, K. Steiner, H. Walz, T. Soczka-
Guth, D.U. Sauer, 2011, “Characterization of high-
power lithium-ion batteries by electrochemical
impedance spectroscopy. I. Modelling,” Journal of
Power Sources, vol. 196, pp. 5349-5356.
[21]J. Gomez, R. Nelson, E. E. Kalu, M. H. Weatherspoon, J.
P. Zheng, 2011 Equivalent circuit model parameters of a
high-power Li-ion battery: Thermal and state of charge
effects. Journal of Power Sources, Vol. 196, pp. 4826-
4831.
[22]張斐張、張麗秋,類神經網路,東華書局,民國94年9月。
[23]鄭有良,類神經網路於鋪面評估之應用,國立成功大學土木研究所碩
士論文,民國92年6月。
[24]阮成戰,磷酸鐵鋰電池充電狀態之交流阻抗動態模擬與分析,國立清
華大學動力機械工程學系碩士論文,民國98年6月。
[25]孫永明,混成燃料電池車超級電容器動態分析與整車動力控制系統設
計,國立清華大學動力機械工程學系碩士論文,民國97年6月。