簡易檢索 / 詳目顯示

研究生: 林俐慧
Li-Huei Lin
論文名稱: 碳六十/雙硫醇壓電晶體膜感測器的研製與應用
Preparation and Application of Fullerene C60-Dithiol Coated Piezoelectric Crystal Membrane Sensor
指導教授: 施正雄
Shih, Jeng-Shong
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 123
中文關鍵詞: 碳六十石英微量天平壓電性感測器硫醇
英文關鍵詞: C60, QCM, piezoelectric, sensor, thiol
論文種類: 學術論文
相關次數: 點閱:303下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳六十/雙硫醇壓電晶體膜感測器的研製與應用
    摘要
    壓電感測器是一種質量感測器,利用質量變化造成頻率改變,再由此頻率變化值了解被偵測物的特性。在本研究中利用自行合成的C60-Ethanedithiol,C60-Propanedithiol及C60-Butanedithiol為塗附物質,以藉此增加晶體吸附金屬的能力及偵測金屬的選擇性,並將它應用在液相的壓電感測器上。此壓電感測器之頻率變化是經振盪線路,再經由計頻器,輸入電腦讀取記錄並繪圖。
    當C60-Dithiol的薄膜吸附金屬離子後會造成石英壓電晶體的重量增加,導致頻率下降,所以吸附量越多,頻率下降量也越多。實驗設計三個系統(1)液體靜相系統(2)液體脫附系統(3)液體動相系統。在靜相系統中針對鹼金族金屬,鹼土族金屬及過渡金屬進行偵測,這三大類金屬中,頻率下降量依序為鹼金族金屬<鹼土族金屬<過渡金屬,其中又以Ag+及Hg2+的效果最好,以最好的Hg2+離子為例其偵測下限可達1.2×10-8 M,靈敏度為7.7×108 Hz/M。
    在脫附系統中可用以了解之前金屬的吸附行為。多數的金屬離子多屬物理吸附,所以可以在此系統中完全脫附,而Ag+及Hg2+的部分則因為和C60-Dithiol的吸附能力太強,可能已有化學鍵結,所以無法在系統中完全脫附。
    在動相系統中和靜相的情況差不多,針對金屬測量時頻率下降量順序也為:鹼金族金屬<鹼土族金屬<過渡金屬,但因為動相系統強調瞬間的吸附能力,所以對於和C60-Dithiol發生化學鍵結的Ag+及Hg2+反倒失去了絕對優勢。
    C60-Dithiol壓電感測器具有好的穩定度及再現性,且對於過渡金屬元素的偵測極限皆可達到10-6M的程度。

    Preparation and Application of Fullerene C60-Dithiol Coated Piezoelectric Crystal Membrane Sensor
    Abstract
    Piezoelectric crystal sensor is an extremely mass-sensitive device based on the inverse piezoelectric effect in which a shift in resonance frequency can be related to its mass change. In this study,some C60-Dithiol complexes,such as C60-Ethanedithiol,C60-Propanedithiol and C60-Butanedithiol were synthesized and applied as coating materials on piezoelectric quartz crystal membranes detector for various metal ions in solution.The frequency shift of the piezoelectric sensor with an oscillator was measured with a frequency counter and recorded with a computer.
    The adsorption of metal ions onto C60-Dithiols coating material caused the increase in the mass of the quartz crystal and the frequency decrease of quartz crystal.Three systems:(1)liquid static system (2)liquid desorption system and (3)liquid flow system were designed in this study.In the liquid static system,frequency shifts for these metal ions were in the order: alkali metal<alkaline-earth metal<transition metal ions.Among these metal ions,Ag+ and Hg2+ are the better than others. The piezoelectric detection system exhibited high sensitivity of 106~108 Hz/M,with the detection limit of 10-6~10-8 M for transition metal ions ,e.g. Cd2+,Zn2+,Ni2+,Cu2+,Co2+,Cr3+,Fe3+,Ag+ and Hg2+.for example, the sensitivity and detection limit behavior of Hg2+ were 7.7×108 Hz/M ,and 1.2×10-8 M .However,the desorption study revealed that among metal ions,only Ag+ and Hg2+ seemed to exhibit chemisorption while physical adsorption is found for all other metal ions.
    The frequency response of the C60-Dithiol coated piezoelectric sensor for these metal ions in the flow system is similar to that of static system.The frequency shifts are also in the order: alkali metal<alkaline-earth metal<transition metal.But in the flow system, Ag+ and Hg2+ cannot show better frequency response than other metal ions due to short time adsorption. The C60-Dithiols coated piezoelectric sensor also showed good stability and reproducibility with RSD of 3.8%。

    目 錄 英文摘要……………………………………………………………………...Ⅰ 中文摘要……………………………………………………………………...Ⅲ 目錄…………………………………………………………………………...Ⅳ 圖目錄………………………………………………………………………...Ⅷ 表目錄………………………………………………………………………..XII 第一章 緒論 1 1-1 碳六十 1 1-1-1 碳六十發現史 1 1-1-2 碳六十基本性質介紹 2 1-1-3 碳六十的化學反應 3 1-1-3.1 C60在有機溶劑中的溶解度 6 1-1-3.2 環化加成反應(Cycloaddition) 6 1-1-3.3 架橋的加成反應(Addition involving bridging) 9 1-1-3.4 個別基團的加成反應: 11 1-1-4 碳六十和硫化物的化學反應 13 1-1-5 碳六十和金屬的反應 16 1-2 碳六十的應用 18 1-2-1 碳六十在高溫超導的應用 18 1-2-2 碳六十在導電高分子上的應用 19 1-2-3 碳六十在藥物上的應用 20 1-2-4 碳六十在層析管柱上的應用 21 1-3 壓電晶體的壓電性 23 1-3-1 壓電性 23 1-3-2 石英振盪器 24 1-3-3 石英振盪器的線路 27 1-3-4 等效線路 28 1-3-5 石英微量天平 29 1-4 石英壓電晶體的應用 34 1-4-1 石英壓電晶體在氣相上的應用 34 1-4-2 石英壓電晶體在液相上的應用 37 1-4-3 石英壓電晶體在生物感測器上的應用 40 第二章 實驗部份 42 2-1 藥品及溶劑 42 2-2 碳六十-雙硫醇的合成 42 2-2-1 空白試驗 42 2-2-2 碳六十-乙二硫醇的合成 43 2-2-3 碳六十-丙二硫醇的合成 44 2-2-4 碳六十-丁二硫醇的合成 44 2-3 石英晶體的處理 45 2-3-1 石英晶體 45 2-3-2 表面塗佈液的配製 45 2-3-3 表面塗佈法 46 2-4 實驗裝置 46 2-4-1 振盪線路 46 2-4-2 液體靜相系統 48 2-4-3 液體脫附裝置 49 2-4-4 液體動相 50 第三章 結果與討論 52 3-1 碳六十-二硫醇之合成 52 3-1-1 碳六十-乙二硫醇的合成 52 3-1-1.1 碳六十-乙二硫醇的光譜圖探討 52 3-1-1.2 溶劑效應的探討 56 3-1-1.3 活化劑量的探討 57 3-1-2 碳六十-丙二硫醇的合成 58 3-1-2.1 碳六十-丙二硫醇的光譜圖探討 58 3-1-3 碳六十-丁二硫醇的合成 62 3-1-3.1 碳六十-丁二硫醇的光譜圖探討 62 3-1-3.2 產物光譜圖的所有比較 65 3-2 碳六十/雙硫醇塗佈石英壓電感測研究 66 3-2-1 塗附物質的影響 66 3-2-1.1 塗附物質對石英晶體頻率感應的影響 66 3-2-1.2 附物質對吸附速率的影響 69 3-2-2 碳六十-乙二硫醇塗佈量的效應 69 3-2-3 碳六十-乙二硫醇塗佈的液體靜相壓電感測系統 72 3-2-3.1 液體靜相系統的穩定度 72 3-2-3.2 系統連續注入時的再現性 72 3-2-3.3 對鹼金族離子的感應 72 3-2-3.4 對鹼土族離子的感應 75 3-2-3.5 對過渡金屬離子的感應 80 3-2-3.6 溶劑效應 85 3-2-3.7 濃度效應 89 3-2-3.8 一般金屬離子的吸附行為探討 95 3-2-3.9 Ag+及Hg2+離子的吸附行為探討 95 3-2-4 碳六十-乙二硫醇壓電感測器的液相脫附系統 97 3-2-4.1 系統注入水時對晶體的感應情形 97 3-2-4.2 Fe3+的脫附行為 97 3-2-4.3 Ag+及Hg2+的脫附行為 97 3-2-5 碳六十-乙二硫醇壓電感測器的動相系統 103 3-2-5.1 動相系統的流速效應 103 3-2-5.2 動相系統的再現性 103 3-2-5.3 動相系統的濃度效應 107 3-2-5.4 對鹼金族離子的感應 107 3-2-5.5 對鹼土族離子的感應 111 3-2-5.6 對過渡金屬離子的感應 111 第四章 結論 115 參 考 資 料 117 附 錄 121

    參 考 資 料
    1.Osawa,E.,Kagaku(Kyoto),Chem.Abstr.1970, 25, 854.
    2. Kroto, H.W.;Hoath ,J.R.;Bricn ,S.C.;Curl ,R.F.,Smalley R.E.Nature
    1985, 318, 162.
    3.Kratschmer,W.;Huffman,D.R.Nature(London),1990, 347, 354.
    4. Kroto, H.W.;Allaf, A.W.;Balm,S.P. Chem. Rev.1991, 91, 1213.
    5. Chen, Y.K.Chemistry(The chinese chem.soc.)1996, 54, 4, 199.
    6. Taylor, R.;Walton, R.M.Nature.1993, 363, 685.
    7. Henry, A.;Robert, L.W.J.Phys.Chem.1990, 94, 8630.
    8. Ando,W.;Akasaka, T.J.Am.Chem.Soc.1993, 115, 1605.
    9. Wilson, S.R.;Kaprinindis, N.;Wu, T.;Schuster, D.I.;Welch, C.J.J.Org.
    Chem.1993, 58, 6548.
    10. Akasaka, T.;Ando, W.;Kobayashi, K.;Nagase, S.J.Am.Chem.Soc.1993,
    115, 9798.
    11. Silwa, W.Fullerene&Technology.1996, 4143, 633.
    12. Nain, A.;Shevlin, P.B.;Tetrahedron Letters.1992, 33, 47, 7101.
    13. Wood,J.M.;J.Am.Chem.Soc.1991, 113, 5907.
    14. Fagan, P.J.;Calabrese, J.C.;Malone, B.Science.1991, 252, 1160.
    15. HawKins, J.M.;Meyer, A.;Lewis, T.A.;Loren, S.;Hollander,F.J.
    Science.1991, 252, 312.
    16. Shiu,L.L.Chemistry(The chinese chem.soc.)1994, 52, 1, 43.
    17. Nagashima, H.;Terasaki,H.;Kimura,E.;Nagashima, K.;Itoh,K.J.Org.
    Chem.1994, 59, 1246.
    18. Kampe, K.D.;Egger, N.;Vogel, M.Angew.Chem.1993, 32, 8.
    19. Ohno, M.;Azumz, T.;Eguchi, S.Chem.Letters.1993, 1833.
    20. Keizer,P.J.;Wasserman, E.Parkinson, B.A.;Malone, B.;Holler, E.R.
    J.Am.Chem.Soc.1991, 113, 6274.
    21. Miller, G.P.;Buretea, M.A.;Bernardo, M.M.;Hsu, C.S.;Fang, H.L.
    J.Chem.Soc.,Chem.Commun.1994, 1549.
    22. Ohno, M.;Kojima, S.;Shirakawa, Y.;Eguchi, S.Tetrahedral Letters.
    1995, 36, 38, 6899.
    23. Ohno, M.;Kojima, S.;Shirakawa, Y.;Eguchi,S.J.Chem.Soc.,Chem.
    Commun.1995, 565.
    24. Westmeyer, M.D.;Galloway, C.P.;Rauchfuss, T.B.Inorg Chem.1994,
    33, 4615.
    25. Broclawik, E.;Eilmes, A.J.Chem.Phys.1998, 108, 9, 3498.
    26. Jiang, L.Q.;Koel, B.E.Phys.Rev.Lett.1994, 72, 1, 140.
    27. Ohno, T.R.;Chen, Y.;Haryel, S.E.;Kroll, G.H.;Weaver, J.H.Phys.Rev.
    B.1991, 44, 24, 13747.
    28. Zhang, X.D.;Zhao, W.B.;Wu, K.;Ye, Z.Y.;Zhang, J.L.;Li, C.Y.;Yin,
    D.L.; Gu, Z.N.;Zhou, X.H.,Jin, Z.X.Chem.Phys.Lett.1994, 228, 100.
    29. Rosenbery,A.;Peebles,D.L.Chem.Phys.Lett.1995, 234, 221.
    30. Wertheim, G.K.;Buchanan, D.N.Phys.Rev.B.1994, 50, 15, 11070.
    31. Ikeda, A.;Fukuhara, C.;Shinkai, S. Tetrahedral Letters. 1996, 37, 39,
    7091.
    32. Chase, S.J.;Bacsa, W.S.;Mitch, M.G.;Pilione, L.J.,Lannin,J.S. Phys
    .Rev.B.1992, 46, 12, 7873.
    33. Altman, E.I.;Colton, R.J.Phys.Rev.B.1993, 48, 24, 18244.
    34. Sokolov, V.I.Pure&Appl.Chem.1998, 70, 4, 789.
    35. Reddic, J.E.;Robinson,J.C.;Duncan,M.A.Chem.Phys.lett.1997, 279,
    203.
    36. Nagao, S.;Kurikawa, T.;Miyajima, K.;Nakajima, A.Kaya, K.J.Phys.
    Chem.A.1998, 102, 4495.
    37.Haddon,R.C.;Hebard,A.F.Nature,1991, 350, 320.
    38.Holczer,K.;Klein,O.Science,1991, 252, 1154.
    39.Zhou,O.,Chemistry in Britain,1996, 32.
    40. Hwang, Y.L.;Hwang, K.C.Chemistry(The chinese chem.soc.)1997, 55,
    4, 53.
    41. Fleming, R.M.;Ramirez, A.P.;Rosseinsky, M.J.Nature.1991, 352, 787.
    42. Haddon,R.C.;Hebard,A.F.Nature.1991, 350, 320.
    43. Hirosawa,I.;Ebbesen, T.W.Nature.1992, 356, 419.
    44. Rosseinsky,M.J.;Murphy, D.W.;Fleming, R.M.;Tycko,R.Nature.1992,
    356, 416.
    45. Wang, Y.Nature.1992, 356, 585.
    46. Friedman, S.H.;Decamp, D.L.;Sijbesma, R.P.;Srdanov,G.J.Am.Chem.
    Soc.1993, 115, 6506.
    47. Pena, Y.P.;Gallego, M.;Valcarcel, M.Anal.Chem.1995, 67, 2524.
    48. Gallego, M.; Pena, Y.P.;Gallego, M.;Valcarcel, M.Anal.Chem.1994,
    66, 4074.
    49. Silva, M.M.;Arruda, M.A.Z.;Krug, F.J.;Oliveira,P.V.Anal.Chim.Acta.
    1998, 368, 255.
    50. 彭成鑑,科儀新知,1995,16,18。
    51. Buttry, D.A.;Ward, M.D.Chem.Rev.1992, 92, 1355.
    52. Martin,S.J.;Frye,G.C.;Ricco,A.J.;Senturia, D.S.Anal.Chem.1993, 65,
    2910.
    53. Levenson, L.L.;Cimento, Suppl.2,Ser.I,1967, 5, 321.
    54.紀培錦,新電子科技雜誌,1989,17,196。
    55. Hlaray, J.;Gahbault, G.G.Anal.Chem.1977, 49, 1890.
    56. Lu, C.;Czanderna, A.W.Application of piezoelectric quartz crystal
    microbbalance.1984, 28.
    57.Sauerbrey,G.,Z.Phys.1959, 155, 206.
    58. Hlavay, J.;Gahbault, G.G.Anal.Chem.1977, 49, 1890.
    59. Thompson,M.;Kipling, A.L.;Rajakovic,L.V.Analyst.1991, 116,881.
    60. Zhou, R.;Josse, F.;Gopel, W.Appl.Organometallic.Chem.1996, 10,
    557.
    61.Mandelis and Christofides;Physis.Chemistry and Technology of Solid state Gas Sensor Devices,1993,New York.
    62.Bruckenstein,S.;Shay,M.,Electrochim Acta,1985, 30, 1295.
    63.Nomura,T.;Watanabe,M.;West,T.S.Anal Chim.Acta,1985, 175, 99.
    64.Fawcett, N.C.;Craven, R.D.;Zhang, P.;Evans, J.A.Anal.Chem.1998, 70,
    2876.
    65.Chao,Y.c.;Shih,J.s.,Anal.Chim.Acta,1998,374,39.
    66.Silvestein R.M.;有機化合物之光譜鑑別法,1963.
    67. Huhheey.Inorganic Chemistry.
    68. Pearson, R.G.J.Am.Chem.Soc.1962, 84, 3533.
    69.Jane,Y.S.;Shin,J.S.;Analyst,1995,120,517.
    70.David,R.L.;Handbook of Chemistry and Physics,1993.
    71.Pouchert,C.J.;The aldrich library of IR spectra,1970,136.

    無法下載圖示
    QR CODE