研究生: |
陳慶芳 CHEN ,CHING-FAN |
---|---|
論文名稱: |
國中生初學正負數加減運算的解題情形 |
指導教授: |
謝豐瑞
Hsieh, Feng-Jui |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
畢業學年度: | 87 |
語文別: | 中文 |
論文頁數: | 182 |
中文關鍵詞: | 國中 、負數 、加減運算 、概念表徵 、比喻 、數學教育 |
英文關鍵詞: | Junior High School, Negative Number, Addition and Subtraction, Conceptual representation, Metaphor, Mathematical Education |
論文種類: | 學術論文 |
相關次數: | 點閱:349 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的主要在探討學生對不同題目結構之正負數加減運算的解題困難,並進一步分析學生的解題策略及思維;而欲探討的策略及分析的思維含規則與符號法則的運用、比喻的運用、概念表徵的運用等,除此,再將學生所自然浮現的策略和思維加以探討。
研究方法主要是量的研究輔以質的分析,根據上述的研究目的,本研究以初學正負數加減運算的國一學生共1756名為研究對象,樣本遍及14個縣市26所學校。研究工具有二:其一為紙筆測驗卷,藉以探討題型、前後數字關係、進退位、位數及括號等變因對正負數加減運算困難度的影響;其二為半結構性晤談綱要,藉以收集解題策略與思維現象。因此,本研究先進行大規模紙筆測驗,再挑選較具代表性,程度上、中、下均有的學生共31位進行半結構性晤談。
本研究的主要結果有下列幾點:(一)題型、前後數字關係、進退位及位數等變因均會影響正負數加減運算的困難度(p<0.05)。(二)減法題的難度平均高於加法題(p<0.01),各題型的困難度由高到低排列依序為
負-正、負-負、正-負、負+負、負+正、正+負、正-正;而除了負+負和正-負間的困難度未達統計上的顯著差異外,其餘各題型間的困難度均達到統計上的顯著差異(p<0.05)。(三)括號中有無包含運算符號,括號的位置、層數及區分二數之符號為加或減等變因均對正負數加減運算的困難度造成影響(p<0.01)。(四)部分學生在解正負數加減運算時,較常出現的解題思維及策略有:套用符號法則、使用規則、強制性加法、強制性減法、絕對值大的數減絕對值小的數、概念表徵、比喻、去括號、負號提出來再加括號、把負號照抄下來或留下來、答案保留式子中絕對值大的數之符號、括號先算等等;同時也發現部分學生在同一種題型中的解題策略切換頻繁,甚至毫無邏輯或規則可循。
最後本研究依據所發現的結果,分別針對教師教學及教材編寫方面提出建議,同時也為後續研究提供可行的方向。
一、 中文部分
Davis,R,B.(1984).Learning Mathematics:the cognitive science approach to mathematics education.劉秋木譯(民79),數學學習。台北,五南。
Klien,F.(1908). Elementary Mathematics from an advanced
standpoint(Arithmetics.Algebra.Analysis).舒湘芹等
譯(民85),高觀點下的初等數學-第一卷 算術、代數、分析,
台北,九章。
Kline,M.(1972). Mathematical Thought from Acient to
Modern Time.林炎全等譯(民72),數學史-數學思想的發展,
台北,九章。
趙文敏(民74 ),《數學史第一卷》,台北,協進圖書有限公司。
袁小明(民74),數學誕生的故事,台北,九章。
洪萬生(民78),數學史與數學教學-打開數學教育研究的一個新方向。
中等教育,第40卷,第6期,頁22-24。
牛頓有限公司主編(民78),科學教授-數學。台北,牛頓有限公司。
張春興(民80),張氏心理學辭典,東華書局。
洪萬生(民80),孔子與數學。台北市,明文書局。
劉鈍著(民80),大哉言數(國學叢書),遼寧教育出版社。
李繼閔著(民81),《九章算術》及其劉徽注研究,台北,九章。
楊淑芬(民81),從皮亞傑的認識論談數學史與數學教育的關聯。國
立台灣師範大學數學研究所碩士論文。
洪萬生(民82),代數學-中國近代第一本西方代數學譯本(上),科學
月刊,第24卷,第12期,頁938-945。
國立編譯館主編(民82),國民中學數學(第一冊)。台北,台灣書店。
謝豐瑞、陳材河(民86),函數的一生。科學教育月刊,第199期,頁34-43。
國立編譯館主編(民86),國民中學數學教師手冊(第一冊)。台北,
台灣書店。
國立編譯館主編(民87),國民中學數學(第一冊)。台北,台灣書店。
唐書志(1998),負數的迷思,HPM台北通訊,第一卷第二期,頁6-10。
王文科(民87),教育研究法(增訂新版)。台北,五南。
二、 英文部分
Aze,L.(1989). Negatives For Little Ones. Mathematics in
School,March 1989, pp.16-17.
Boyer,C.B.(1968). A History of Mathematics.New York: John Willey
& Sons.
Bird,Anne Marie.et al.(1983).The Observational Learning of a Timing Skill. (ERIC Document Reproduction Services No.ED269370)
pp.1-23.
Berlin,D.F.(1990). SSMILES. School Science and Mathematics,
90(1),pp.70-76.
Bell,A.(1993). Some Experiments in Diagnoistic Teaching.
Educational Studies in Mathematics,24,pp.115-137.
Bruno,A.,& Martion,A.(1994). Contexts and Structures in the
learning of negative numbers.Proceeding of the XVIII
Conference of the International Group for the psychology of
Mathematics Education,Lisbon,1,32.
Burno,A.,Espinel,M.C.,& Martinon,A.(1997). Prospective Teachers
Solve Additive Problems with Negative Numbers. Focus on
Learning Problems in Mathematics ,19(4), pp.36-55.
Cajori,F.(1979). A History of Mathematics(3th ed.).New York:
Chelsea Publishing Co.
Crowley,M.L. & Keenneth A. Dunn,K.A.(1985). On Multiplying Negative
Numbers. Mathematics Teacher,April,1985,252-256.
Cemen,P.B.(1993). Adding and Subtracting Integers on the Number
Line. Arithmetic Teacher,40(7),pp.388-389.
Chiu,M.M.(1994). Metaphorical Reasoning in Mathematics:Experts
and Novices Solving Negative Number Problems. (ERIC Document
Reproduction Services No. ED374988)
Chaman,O.(1997). Metaphors in the Teaching of Mathematical Problem
Solving.Educational Studies in Mathematics,32,201-228.
Ernest,P.(1998). The History of Mathematics in the Classroom.
Mathematics in School,27(4),p.25.
Favreau,M. & Lemoyne,G.(1981). Piaget's concept of Number
development:It's Relevance to Mathematics Learning. Journal
for Research in Mathematics Education ,12(1), pp.179-196.
Gay,L.R.(1987). Educational Reaearch / Competencies for Analysis
and Application(3th ed.). London:Merrill Publishing Company.
Hefendehl-Hebeker,L.(1991). Negative Numbers:Obstacles in their
Evolution from Intuitive to Intellectual Constructs.For the
Lerarning of Mathematic,11(1),26-32.
Hitchcock,G.(1992). The Grand Entertainment: Dramatising the Birth
and Development of Mathematical Concepts.For the Learning of
Mathematics, 12(1),pp.21-27.
Hativa,N & Cohen.D(1995). Self learning of negative number concept
by lower division elementarystudents through solving
computer-provided numerical problems.Educational Studies in
Mathematics ,28,pp.401-431.
Herbst,P.(1997). The Number-Line Metaphor in the Discourse of a
Textbook Series.For The Learning of Mathematics,17(3),36-
45.
Hitchcock,G.(1997). Teaching the Negatives,1870-1970:A Medley of
Models.For the Learning of Mathematics, 17(1),pp.17-25.
JAMES Gow,M.A.(1963). A Short History of Greek Mathematics.
Diophantus and Algebra,pp.100-122.NEW YORK,N.Y.:Chelsea
Publishing Company.
Janvier,C.(1985). Comparision of Models Aimed at Teaching Signed
Numbers. (ERIC Document Reproduction Services No.ED411130)
pp.147-152.
Kuchemann,D.E(1981). Positive and Negative Numbers.Children's
Understanding of Mathematics:11-16.pp.82-87.
Kerslake,D.(1991).The Language of Fraction.In Durkin,K.& Shire,
B.(Eds). Language in Mathematical Education:Research And
Practice.pp.85-94.Open University Press.
Kieran,C.(1993). Cognitive Proceses Involved in Learning School
Algebra.In Nesher,p. & Kilpatrick,J.(Eds). Mathematics and
Cognition:A Research Synthesis by the International Group for
the Psychology of Mathematics Education.pp.96-112.Cambridge
University Press.
Mitchell,C.E.(1983). The Non-commutativity of Subtraction. School
Science and Mathematics,83(2),pp.133-139.
Murray,J.c.(1985). Children's Informal Conceptions of Integer
Arithmetics.In Streefland,F.(Ed.).Proceedings of the Annual
Conference of the International Group for the Psyschology of
Mathematics Education(9 th,Noordwijkerhout,The Netherlands
,July22-29,1985 ),Volume1:Individual contributions.pp.147-
153.
Mukhopadhyay,S.,Resnick,L.B.&Schauble,L.(1990). Social Sense-
Making in Mathematics;Children's Ideas of Negative Numbers.
(ERIC Document Reproduction Services No. ED342632)
McAuley,J.(1990). Please Sir I didn't do Nothin. Mathematics in
school, January 1990,pp.45-47.
Markovit,Z.(1994). Developing Number Sense : An Intervention Study
In Grade 7. Journal for Research in Mathematics Education,
25(1),pp.4-29.
Mukhopadhyay,S.(1996). Story Telling as Sense-Making : Children's
Ideas About Negative Numbers. Hiroshuma Journal of Mathematics
Education,5,pp.35-50,1997.
Nolder,R.(1991). Mixing metaphor and mathematics in the secondary
classroom.In Durkin,K.& Shire,B.(Eds).Language in
Mathematical Education:Research and Practice.pp.105-113.
Open University Press.
Nuffield Foundation.(1994).Two minuses make a Plus.In H.Heill(Ed.)
,Nuffield Advanced Mathematics History of mathematics,
pp.124-136.
Patton,M.Q.(1991). Qualative Evaluation And Research Methods(2th
ed.). London:SAGE Publications.
Peled,I.(1991). Levels of knowledge about signed numbers:effects
of age and ability.Proceedings of the 13th International
Conference for the Psychology of Mathematics Education,
pp.145-152.
Robert,E.R.(1998). Relationship Between Computational Performance
and Number Sense Among Sixth- and Eighth-Grade Students in
Taiwan. Journal for Research in Mathematics Education,
29(2),pp.225-237.
Sfard,A.(1994). Reification as the Birth of Metaphor.For the
Learning of Mathematics,14(1),pp.44-55.
Streefland,L.(1996). Negative Numbers : Reflections of a Learning
Resrearcher.Journel of Mathematical Behavior,15,pp.57-77.
Thomas,D.(1976). A Comparision of Different Conceptual Bases for
Teaching Subtraction of Integers.In M.N.Suydam & A.R.Osborne
(Ed.),Algorithmic Learning,pp.119-131.
Thomaidis,Y.(1993). Aspects of Negative Numbers in the Early 17th
Century.Science & Education,2,pp.69-86.