簡易檢索 / 詳目顯示

研究生: 洪筱涵
論文名稱: 以3,7-Dibenzothiophene-S,S-dioxide建構的電激發光材料
指導教授: 葉名倉
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 127
中文關鍵詞: 電機發光材料
論文種類: 學術論文
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用Stille coupling、Buchwald-Hartwig coupling、及Suzuki coupling等反應,合成出一係列以3,7-dibromodibenzothiophene- S,S-dioxide建構之有機電激發光材料,其螢光光色從藍到橘紅。此系列化合物具有好的熱穩定性其玻璃轉換溫度(Tg)介於112–207 oC及熱裂解溫度(Td)介於299–505 oC。與異構化合物2,8-disubstituted dibenzothiophene-S,S-dioxide衍生物相較,本系列化合物的兩個取代基有較佳的共軛。利用蒸鍍法將本系列化合物製成三種電激發光元件: (device I) 作為電洞傳輸兼發光層,ITO/cpd/TPBI/LiF/Al; (device II) 作為電子傳輸兼發光層,ITO/NPB/cpd/ LiF/Al; (device II) 作為電子、電洞傳輸兼發光層,ITO/cpd/LiF/Al(device III)(cpd = SOO-1, SOO-2, SOO-3, SOO-4, SOO-8 )。其中以SOO-3在device II及device III表現較亮眼,在device II中,元件最大效率可達3.09%,最大亮度為20681 cd/m2,而電流密度100 mA/cm2時,其效率為ext 2.05%;device III中,元件最大效率可達1.69%,最大亮度為15717 cd/m2,而電流密度100 mA/cm2時,其效率為ext 1.29%。利用旋轉塗佈法製成元件,結構為ITO/PEDOT:PSS/PVK + cpd (20 wt%)/BCP (10 nm)/TPBI (40nm)/ LiF (1 nm)/Al (120 nm) (cpd = SOO-5, SOO-6, SOO-7 )。其元件表現以SOO-6最佳,元件最大效率可達3.42%,最大亮度為8063 cd/m2,而電流密度100 mA/cm2時,其效率為ext 1.16%。元件結構為ITO/ ployfluorene + cpd (20 wt. %)/TPBI/LiF/Al (cpd = SOO-9, SOO-10),最值得關注的是SOO-10 CIE座標落在(0.35, 0.33),接近純白的光色。

    Abstract
    A series of materials derived from 3,7-disubstituted dibenzothiophene- S,S-dioxide for electroluminescent devices have been synthesized by Stille coupling, Buchwald-Hartwig coupling, and Suzuki coupling reactions. The fluorescence colors of these compounds can be tuned from blue to orange-red. These dibenzothiophene derivatives show good thermal stabilities: the glass transition temperatures (Tg) range from 112 to 207 ℃ and high thermal decomposition temperature range from 299 to 505 ℃. Compare to 2,8-disubstituted congeners of dibenzothiophene- S,S-dioxide, the two substituents in these compounds have better electronic communication. Three types of electroluminescent devices were fabricated by using vacuum deposition: ITO/cpd/TPBI/LiF/Al (device I), ITO/NPB/cpd/LiF/Al (device II) and ITO/cpd/LiF/Al (device III), where these compounds (cpd = SOO-1, SOO-2, SOO-3, SOO-4, SOO-8) were used as the hole-transporting and emitting layer, electron-transporting and emitting layer, and electron- and hole-transporting as well as emitting layer, respectively. The performance of device II and device III based on SOO-3 is promising: device II has the maximum efficiency and the maximum luminescence of 3.09% and 20681 cd/m2, respectively, and the external quantum efficiency (ext) of 2.05% at a current density of 100 mA/cm2; the maximum efficiency and the maximum luminescence reach 1.69% and 15717 cd/m2, respectively, for device III. The ext also reaches 1.29% at a current density of 100mA/cm2. Spin-coating technique was used to fabricate the device ITO/PEDOT:PSS/PVK + cpd (20 wt%)/BCP (10 nm)/TPBI (40nm)/LiF (1 nm)/Al (120 nm), where cpd represents SOO-5, SOO-6 or SOO-7. Among these, SOO-6 shows the best performance: the maximum external quantum efficiency of 3.42% and the maximum luminescence of 8063 cd/m2; at the current density of 100mA/cm2, ext is as high as 1.16%. Device of configuration, ITO/ployfluorene + cpd (20 wt. %)/TPBI/ LiF/Al (cpd = SOO-9 or SOO-10), were also fabricated. The device of SOO-10 emits pure white light due to incomplete energy transfer, and the CIE coordination is at (0.35, 0.33).

    目錄 摘要 I 謝誌 V 目錄 VII 圖目錄 IX 表目錄 XII 第一章 緒論 1 1-1. 前言 1 1-2. 有機電激發光的歷史演進 2 1-3. OLED的發光原理及放光機 4 1-4. 螢光與磷光 6 1-5. 有機發光二極體材料及元件結構 9 1-6. HOMO與LUMO能階的計算 21 1-7. 量子產率的測 23 1-8. 研究動機 24 第二章 實驗部分 26 2-1. 實驗儀器 26 2-2. 實驗藥品及溶劑 28 2-3. 合成步驟 31 第三章 結果與討論 67 3-1. 實驗合成與反應機制之探討 67 3-2 光物理性質之探討 73 3-3. 熱性質之案討 81 3-4. Energy Level 之探討 84 3-5. 元件製作及性質之探討 89 3-6. 雙光子吸收之探討 105 第四章 結論 107 參考文獻 108 附錄 112

    1. Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042.
    2. Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.
    3. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
    4. Burroughs, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539.
    5. (a) VanSlyke, S. A.; Chen, C. H.; Tang, C. W. Appl. Phys. Lett. 1996, 69, 2160. (b) Shirota, Y.; Kuwabara, Y.; Inada, H. Appl. Phys. Lett. 1994, 65, 807.
    6. Imai, K.; Wakimoto, T.; Shirota, Y.; Inada, H.; Kobata, T. US Patent 5,374,489, 1994.
    7. Brown, T. M.; Kim, J. S.; Friend, R. H.; Cacialli, F.; Daik, R.; Feast, W. J. Appl. Phys. Lett. 1999, 75, 1679.
    8. Brown, T. M.; Kim, J. S.; Friend, R. H.; Cacialli, F.; Daik, R.; Feast, W. J. Appl. Phys. Lett. 1999, 75, 1679.
    9. Salbeck, J.; Yu, N.; Bauer; Weissotel, F.; Bestgen, H. Synyh. Met. 1997, 109, 91.
    10. Justin Thomas, K. R.; Lin, J. T.; Tao, Y.-T.; Ko, C.-W. Adv. Mater., 2000, 12, 1949.
    11. (a) Salbeck, J.; Yu, N.; Weissotel, F.; Bestgen, H. Synyh. Met. 1997, 109, 91. (b) Justin Thomas, K. R.; Lin, J. T.; Tao, Y. T.; Ko, C. W. Adv. Mater. 2000, 12, 1949.
    12. Wakimoto, T.; Fukada, Y.; Nagayama, Y.; Yokoi, A.; Nakada, H.; Tsuchida, M. IEEE Trans. Electron. Devices 1997, 44, 1245.
    13. Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1989, 55, 1489.
    14. (a) Kido, J.; Ohtaki, C.; Okuyama, K.; Nagai, K. Jpn. J. Appl. Phys. Part 2, 1993, 32, L917. (b) Fink, R.; Heischkel, Y; Telakkat, M.; Schmidt, H.-W.; Jonda, C.; Huppauff, M. Chem. Mater., 1998, 10, 3620. (c) Shi, J.; Tang, C. W.; Chen, C. H. U.S. 1997, 5646948. (d) Agrawal, A. K.; Jenekhe, S. A.Chem. Mater., 1996, 8, 579. (e) Bettenhausen, J.; Greczmiel, M.; Jandke, M.; Strofriegl, P. Synth. Met., 1997, 91, 223. (f) Palilis, L. C.; Makinen, A. J.; Uchida, M.; Kafafi, Z. H. Appl. Phys. Lett. 2003, 82, 2209.
    15. (a)Wakimoto, T.; Fukada, Y.; Nagayama, Y.; Yokoi, A.; Nakada, H.; Tsuchida, M. IEEE Trans. Electron. Devices 1997, 44, 1245.(b) Stoβel, M.; Staudigel, J.; Steuber, F.; Blassing, J.; Simmerer, J.; Winnacker, A. Appl. Phys. Lett. 2000, 76, 115. Stoβel, M.; Staudigel, J.; Steuber, F.; Blassing, J.; Simmerer, J.; Winnacker, A. Appl. Phys. Lett. 2000, 76, 115.(c) Brown, T. M.; Friend, R. H.; Millard, I. S.; Lacey, D. J.; Butler, T.; Burroughes, J. H.; Cacialli, F. J. Appl. Phys. 2003, 93, 6159.
    16. Shen, J. Y.; Yang, X. L.; Huang, T. H.; Lin, J. T.; Ke, T. H.; Chen, L. Y.; Wu, C. C.; P. Yeh, M. C. Adv. Funct. Mater. 2007, 17, 983.
    17. Chien, C. H.; Chen, C. K.; Hsu, F. M.; Shu, C. F.; Chou, P. T.; Lai, C. H. Adv. Funct. Mater. 2009, 19, 560.
    18. Huang, T. H.; Lin, J. T.; Chen, L. Y.; Lin, Y. T.; Wu, C. C. Adv. Mater. 2006, 18, 602.
    19. Moorthy,J. N.; Natarajan, P.; Venkatakrishnan, P.; Huang, D. F.; Chow, T. J. Org. Lett. 2007, 9, 5215.
    20. Lai, M. Y.; Chen, C. H.; Huang, W. S.; Lin, J. T. Ke, T. H.; Chen, L.Y.; Tsai, M. H.; Wu , C. C. Angew. Chem. Int. Ed. 2008, 47, 581.
    21. Bredas, J. L.; Silbey, R.; Boudreaux, D. S.; Chance, R. R. J. Am. Chem. Soc.1983, 105, 6555.
    22. Janietz, S.; Bradley, D. D. C.; Grell, M.; Giebeler, C.; Inbasekaran, M.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 2453.
    23. Jones, G.; Jackson, W. R.;Chio, C. Y.; Bergmark, W. R. J. Phys. Chem. 1985, 89, 294.
    24. (a) Li, J.; Ma, C.; Tang, J.; Lee, C. S.; Lee, S. Chem. Mater. 2005, 17, 615. (b) Li, Z. H.; Wong, M. S.; Fukutani, H.; Tao, Y. Chem. Mater., 2005, 17, 5032. (c) Huang, T. H.; Whang, W. T.; Shen, J. Y.; Lin, J. T. J. Mater. Chem. 2005, 15, 3233.
    25. (a) Kulkarni, A. P.; Tonzola,C. J.; Babel, A.; Genekhe, S. A. Chem. Mater. 2004, 16, 4556. (b) Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4556.
    26. (a) Miyaua, N.; Suzuki, A. Chem. Commun. 1979, 866 ; (b) Suzuki, A. J. Organomet. Chem. 1999, 576, 147.
    27. Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374.
    28. Huang, J.; Li,.C.; Xia, Y. J.; Zhu, X. H.; Peng, J.; Cao, Y. J. Org. Chem. 2007, 72, 8580
    29. Kim, D.; Lee, J. K.; Kang, S. O.; Ko, J. Tetrahedron 2007, 63, 1913.
    30. Grisorio, R.; Melcarne, G.; Suranna, G. P.; Mastrorilli, P.; Nobile, C. F.; Cosma, P.; Fini, P.; Colella, S.; Fabiano, E.; Piacenza, M.; Sala, F. D.; Ciccarella, G.; Mazzeo, M.; Gigli, G. J. Mater. Chem. 2010, 20, 1012.
    31. Pawlicki, M.; Collins, H. A.; Denning, R. G.; Andersen, H. L. Angew. Chem. Int. Ed. 2009, 48, 3244.
    32. Huang, P. H.; Shen, J. Y.; Pu, S. C.; Wen, Y. S.; Lin, J. T.; Chou, P. T.; P. Yeh, M. C. J. Mater. Chem. 2006, 16, 850.

    無法下載圖示 本全文未授權公開
    QR CODE