簡易檢索 / 詳目顯示

研究生: 郭翊
Kuo Yi
論文名稱: 二極式電沉積法製備氧化鎢薄膜之電致色變性質研究
Electrochromic properties of tungsten oxide thin film deposited by two-electrode electrodeposited process
指導教授: 程金保
Cheng, Chin-Pao
鄭淳護
Cheng, Chun-Hu
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 102
中文關鍵詞: 氧化鎢薄膜電致色變電沉積法退火處理
英文關鍵詞: tungsten oxide, electrochromic efficiency, electrodeposition, annealing
論文種類: 學術論文
相關次數: 點閱:237下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以電沉積法製備氧化鎢電致色變薄膜,利用控制不同的電沉積溶液靜置時間,使鍍液產生時效作用,並將所沉積出之薄膜進行退火,最後進行電致色變特性評估。本實驗分三個部份,第一部份使用二極式電沉積系統,先求得電沉積起始電位,再決定電沉積參數,並且使用定電位法沉積氧化鎢薄膜;第二部份探討不同時效時間鍍液對於其所沉積氧化鎢薄膜的影響;第三部份將薄膜進行退火處理,並觀察退火前後對於著去色電荷進出量、著色效率與漏電流的影響。經由本實驗所量測得到的二極式電沉積起始電位為0.922 V,最佳著去色電位為2.5 V,利用1.5 V沉積電位條件沉積2分鐘所得到之薄膜厚度約為300 nm,表面粗糙度介於1.0-1.5 nm之間,退火後表面粗糙度則低於1 nm。經電致色變特性分析,沉積出最好的薄膜參數為鍍液時效4天後進行電沉積之薄膜(未退火),其穿透率差達54.3%,光密度差為0.48,著色效率可達37.3 cm2/coul,且去色回復率為95%。經100℃退火之薄膜其著色效率與回復率均下降,分別為14.1 cm2/coul與35%,由元件電性量測證實300℃退火之薄膜具有很高的漏電流與非常狹窄的遲滯區間,因而導致薄膜難以進行著去色反應。

    In this study, electrodeposition method was used to fabricate WO3 electrochromic thin film. To obtain better electrochromic property of device, the solution was aged with different days before depositing process. Furthermore, some thin films were annealed to explore its effect on the electrochromic property of the device. The experiments of this study were divided into three parts. The first part was to use a two-electrode electrodepositing system to form WO3 thin film and find the start voltage of electrodeposition. The fixed voltage mode was used to fabricate the WO3 thin film. The second part was to explore the difference of the electrochromic property of thin film deposited by different ageing time. Finally, some thin films were annealed in the third part to observe the variety of properties including colored/bleached charge, coloring efficiency and current leakage difference. According to the experimental results, the starting voltage for depositing film is about 0.922 V and the best colored/bleached electric voltage is 2.5 V. The thickness of WO3 thin film is about 300 nm when the operating parameter has been controlled at 1.5 V and 2 minutes. The surface roughness of thin films before annealing is about 1~1.5 nm, and it reduced to about 1 nm after annealing process. The four days aged of solution before depositing thin film can achieve the best electrochromic properties, which makes the thin film have the transmittance difference of 54.3%, optical density difference of 0.48, and coloring efficiency of 37.3 cm2/coul and the recovery rate of 95%. The thin film annealed at 100℃ makes the devices have relatively poor color efficiency and recovery rate, about 14.1 cm2/coul and 35%, respectively. According to the electrical measurements of the films annealed at 300℃, it has been proved that the devices have higher current leakage and a narrow hysteresis region, which will make the colored and bleached of thin film is hard to develop.

    第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 3 第二章 文獻回顧 5 2.1電致色變元件 5 2.2氧化鎢電致色變機制 7 2.3光學量測簡介 9 2.3.1穿透率(Transmittance) 9 2.3.2穿透率差(T) 10 2.3.3光密度(OD) 10 2.3.4著色效率(CE) 11 2.4電致色變層製備方法 12 2.4.1濺鍍法(sputter deposition) 12 2.4.2蒸鍍法(evaporation deposition) 14 2.4.3溶膠-凝膠法(sol-gel process) 15 2.4.4電沉積法 (Electrodeposition) 19 2.5氧化鎢薄膜電沉積理論 21 2.5.1鍍液調配與保存 21 2.5.1.1低溫久置法 21 2.5.1.2迴流法(reflux) 21 2.5.1.3乙醯化迴流法 22 2.5.1.4稀釋法 22 2.5.1.5鉑黑催化法 22 2.5.2自生沉降的氧化鎢顆粒 23 2.5.3薄膜結晶形態 25 2.5.4電沉積法製備電致變色薄膜的方法與優勢 26 2.6電泳沉積概述(EDP) 28 2.6.1膠體表面電荷 28 2.6.2電雙層 29 2.6.3分散機制與DLVO理論 30 2.7複合電沉積共析理論 31 2.7.1二階段吸附理論 31 2.7.2五階段吸附理論 32 2.8傅立葉轉換遠紅外光光譜(FT-IR)量測 34 2.9三極式與二極式電沉積 36 第三章 實驗方法與步驟 37 3.1實驗藥品與耗材 37 3.2實驗流程規劃 38 3.3鍍液調配 40 3.4鍍液時效與初步篩選 41 3.5基板前處理 41 3.6複合電沉積 42 3.7電解液調配 42 3.8去氧退火 43 3.9性質鑑定 43 3.9.1薄膜表面及微結構之分析 43 3.9.2傅立葉轉換遠紅外光光譜分析 43 3.9.3粒徑分析 44 3.9.4電化學分析 44 3.9.5光學性質量測 45 3.9.6元件性能分析 45 第四章 結果與討論 47 4.1二極式電沉積設備製程技術開發 47 4.1.1三極式電沉積設備介紹 47 4.1.2二極式與三極式電沉積模型 48 4.1.3二極式電沉積之技術突破 49 4.1.4電沉積總功與膜厚之關係 51 4.2粒徑分析與團聚機制 57 4.2.1鍍液時效作用 57 4.2.2團聚機制 58 4.3薄膜著去色之進出電荷量 60 4.3.1退火前後對薄膜影響與著/去色電量評估 60 4.3.2鍍液時效作用時間與退火對著色與自然去色之影響 65 4.4全波段光學掃描圖譜 69 4.4.1穿透率量測 69 4.4.2穿透率差 72 4.4.3光密度差 73 4.5單一光源即時光譜之光學性質量測 75 4.5.1穿透率量測 75 4.5.2穿透率差、穿透回復率與光密度差 79 4.5.3著色效率(Color efficiency) 81 4.6原子力顯微鏡(AFM)與電子顯微鏡(SEM)之影像及特性 82 4.6.1表面粗糙度量測與討論 82 4.6.2厚度量測與電子顯微鏡(SEM)影像 85 4.7薄膜退火對其薄膜CV/IV特性之影響 88 4.7.1電容-電位掃描圖(CV) 88 4.7.2電流-電位掃描圖(IV) 90 4.8傅立葉轉換遠紅外光光譜儀(FT-IR) 92 第五章 結論與展望 93 5.1結論 93 5.2未來展望 95 參考文獻 96   圖目錄 圖1-1電致色變節能窗應用於建築體之實例 2 圖1-2電致色變之各種應用與產業圖 4 圖2-1 電致色變元件之結構及其著去色情形 5 圖2-2 氧化鎢之單位晶胞示意圖 8 圖2-3 在給定(a)14 mC/cm2,(b)18 mC/cm2,(c)22 mC/cm2面積電量下之電致變色薄膜變色的情況 11 圖2-4 腔體壓力與鎢氧關係圖(小圖為XRD分析圖) 13 圖2-5 不同條件下於各波段下換算出之CE值 13 圖2-6 溫度對光密度之影響(●為氣體感測變色,■為電致變色) 14 圖2-7 鎢氧比對光密度的影響(■為氣體感測變色,●為電致變色) 15 圖2-8 浸鍍(dip coating)及旋鍍(spin coating)法製備薄膜示意圖 17 圖2-9 WO3 膜在不同退火溫度之著去色(a)穿透光譜;(b)吸收光譜 18 圖2-10 以新鮮鍍液立即沉積之氧化鎢薄膜 23 圖2-11 鍍液時效48小時之結塊 23 圖2-12 循環伏安法量測結果 24 圖2-13 GITT量測結果: a)立即電沉積, b)時效48小時後電沉積 24 圖2-14 薄膜於 (a)400℃ (b)200℃與(c)未退火之XRD分析 25 圖2-15 於0.1 M 過氯酸鋰+碳酸丙烯中進行循環伏安法之(a) 電沉積法製備、(b) 真空蒸鍍法製備的電致變色薄膜 27 圖2-16 電雙層示意圖 29 圖2-17 DLVO理論示意圖 30 圖2-18 二階段吸附理論示意圖 32 圖2-19 五階段吸附理論示意圖 33 圖2-20 ITA、AIPTA、APTA之FTIR圖譜 35 圖2-21 二極式與三極式電沉積示意圖 36 圖3-1 實驗流程圖 39 圖3-2 鍍液配製流程圖 40 圖3-3 鍍液時效與去除糰絮示意圖 41 圖3-4 實驗設備與複合電沉積過程示意圖 42 圖3-5 粒徑分析儀 44 圖3-6 Keithley 2400測定裝置示意圖…………………………………………….44 圖4-2 (a)二極式與(b)三極式電沉積系統之電路模型 49 圖4-3 二極式電沉積設備之鍍液電位-電流掃描圖 51 圖4-4 (a) 1.5 V下電沉積2分鐘之電沉積電流圖 52 圖4-4 (b) 1.5 V下電沉積2.5分鐘之電沉積電流圖 53 圖4-4 (c) 1.5 V下電沉積3分鐘之電沉積電流圖 53 圖4-4 (d) 1.5 V下電沉積3.5分鐘之電沉積電流圖 54 圖4-4 (e) 1.5 V下電沉積4分鐘之電沉積電流圖 54 圖4-5 電沉積時間與計算出之能量關係圖 55 圖4-6 電沉積時間與能量膜厚關係圖 55 圖4-7 計算出之能量與量測出之膜厚檢定圖 56 圖4-8 粒徑分析結果 57 圖4-9 鍍液時效1天、2天與3天之粒徑分析圖58 58 圖4-10粒徑分析之小顆粒區間放大圖 59 圖4-11 未退火之著色電流圖(每0.5 V) 61 圖4-12 未退火之著色電流圖(每0.1 V) 61 圖4-13 薄膜退火後進行著色時的電流圖 62 圖4-14 未退火的薄膜於不同電位下著去色情形 63 圖4-15 退火過的薄膜於不同電位下著去色情形 63 圖4-16 不同電位下輸入薄膜的電荷圖 64 圖4-17 不同電位下薄膜輸出電荷圖 64 圖4-18 不同時效時間之未退火(粗線)與未退火(細線)薄膜自然去色電流圖 66 圖4-19 (a)未退火的鍍液時效1天後電沉積之薄膜,(b)退火過的鍍液時效1天後電沉積之薄膜,(c) 未退火的鍍液時效5天後電沉積之薄膜,(d) 退火過的鍍液時效5天後電沉積之薄膜,於著色後自然去的色情形 67 圖4-20 不同參數之薄膜自然去色時的電荷量比較圖 68 圖4-21(a) 鍍液時效1天後鍍出薄膜之著去色之全波段穿透率 70 圖4-21(b) 鍍液時效2天後鍍出薄膜之著去色之全波段穿透率 70 圖4-21(c) 鍍液時效3天後鍍出薄膜之著去色之全波段穿透率 70 圖4-21(d) 鍍液時效4天後鍍出薄膜之著去色之全波段穿透率 71 圖4-21(e) 鍍液時效5天後鍍出薄膜之著去色之全波段穿透率 71 圖4-22 鍍液於不同時效時間後所沉積之薄膜穿透率差圖譜 72 圖4-23鍍液於不同時效時間所沉積之薄膜對500 nm、800 nm、1000 nm波段穿透率差的影響 73 圖4-24 鍍液於不同時效時間所沉積之薄膜的光密度率差全波段圖譜 74 圖4-25 鍍液於不同時效時間所沉積之薄膜對500 nm、800 nm、1000 nm波段的光密度差之影響 74 圖4-26 (a) 未退火的時效1天之鍍液所沉積之薄膜的即時光譜量測圖 76 圖4-26 (b) 未退火的時效2天之鍍液所沉積之薄膜的即時光譜量測圖 76 圖4-26 (c) 未退火的時效3天之鍍液所沉積之薄膜的即時光譜量測圖 77 圖4-26 (d) 未退火的時效4天之鍍液所沉積之薄膜的即時光譜量測圖 77 圖4-26 (e) 未退火的時效5天之鍍液所沉積之薄膜的即時光譜量測圖 78 圖4-26 (f) 退火過的時效1天之鍍液所沉積之薄膜的即時光譜量測圖 78 圖4-26 (g) 退火過的時效5天之鍍液所沉積之薄膜的即時光譜量測圖 79 圖4-27 時效不同天數與退火後之光密度差 (T)、穿透回復率(R)與光密度差(OD),標記未填滿者皆為退火後之薄膜 80 圖4-28 著色效率與面積電量圖 81 圖4-29 取五點平均所計算出各種不同參數薄膜之表面粗糙度 83 圖4-30 表面粗糙度對著色效率之檢定圖 83 圖4-31 不同時效時間之鍍液所沉積的薄膜未退火之AFM表面3D圖 84 圖4-32時效1天與5天之鍍液所沉積的薄膜退火後之AFM表面3D圖 84 圖4-33 分別由AFM與SEM所測得之厚度 85 圖4-34 SEM影像,(a)-(e)分別為鍍液時效1-5天所鍍出的薄膜之正視圖,而圖(f)-(j)則分別為鍍液時效1-5天所鍍出的薄膜之側視圖 86 圖4-35 結塊與薄膜之EDS掃描 87 圖4-36 未退火的氧化鎢薄膜於不同頻率下之CV圖 89 圖4-37 以300℃去氧退火過的氧化鎢薄膜之CV圖 89 圖4-38 未退火與退火過的薄膜於10 kHz下之CV圖 90 圖4-39 未退火的試片之電流-電位圖 91 圖4-40 退火過的試片之電流-電位圖 91 圖4-41 鍍液分別進行FTIR之圖譜 92   表目錄 表2-1常見過渡金屬氧化物的變色方式及性質 6 表2-2 旋鍍及浸鍍法製備WO3膜之電致色變特性比較 17 表2-3 旋鍍及浸鍍法製備WO3 膜之響應時間及離子貯存能力特性比較 17 表2-4 FTIR之波段對照表 35 表3-1 化學藥品資料表 37

    1. http://web2.moeaboe.gov.tw/ECW/Policy/EnergyMeeting/defalult.htm
    2.
    鄭耕哲, ”電致色變智慧型節能窗之特性與發展現況”, 工業材料雜誌, 290期, pp.102-109 (2011).
    3. http://windows.lbl.gov/comm_perf/Electrochromic/ec_tech.html.
    4.
    經濟部能源局, “變色節能玻璃可行性研究87年度工作報告”, (1998)。
    5.
    http://www.ec-ind.com/ec/MarketView.asp?ID=7&SortID=1.
    6.
    http://home.howstuffworks.com/smart-window4.htm.
    7.
    J. livage, D. Ganguli, “Sol-gel electrochromic coatings and devices: A review”, Solar Energy Materials &Solar Cell, Vol. 68, pp. 365-381 (2001).
    8. http://zh.wikipedia.org/wiki/%E4%B8%89%E6%B0%A7%E5%8C%96%E9%92%A8.
    9.
    K. Bange, “Colouration of tungsten oxide films: A model for optically active coatings”, Solar Energy Materials & Solar Cells, Vol. 58, pp. 1-131 (1999).
    10.
    U. Muller, “Inorganic Structural Chemistry”, John Wiley & Sons, Chichester, U.K. (1993).
    11.
    E. Khoo, P.S. Lee, J. Ma, “Electrophoretic deposition (EPD) of WO3 nanorods for electrochromic application”, Journal of the European Ceramic Society, Vol. 30, pp. 1139-1144 (2010).
    12.
    S. K. Deb, “Optical and Photoelectric Properties and Color Centers in Thin Films of Tungsten Oxide”, Philosophical Magazine, Vol. 27, pp. 801-822 (1973).
    13.
    B. W. Faughnan, R. S. Crandall, P. M. Heyman, “Electrochromism in WO3 Amorphous Films”, RCA Review, Vol. 36, pp. 177-197 (1975).
    14.
    J.M. Honig, in: S. Trasatti (Ed), “Electrodes of Conductive Metallic Oxides”, Elsevier, Amsterdam, (1980).
    15.
    M. Giannouli,G.Leftheriotis, “The effect of precursor aging on the morphology and electrochromic performance of electrodeposited tungsten oxide films”, Solar Energy Materials & Solar Cells, Vol. 95, pp. 1932-1939 (2011).
    16.
    A.K. Srivastava, M. Deepa, S. Singh, R. Kishore, S.A. Agnihotry, “Microstructural and electrochromic characteristics of electrodeposited and annealed WO3 films”, Solid State Ionics, Vol. 176, pp. 1161-1168 (2005).
    17.
    M. Deepa, A.K. Srivastava, S.N. Sharma, Govind, S.M. Shivaprasad “Microstructural and electrochromic properties of tungsten oxide thin films produced by surfactant mediated electrodeposition”, Applied Surface Science, Vol. 254, pp. 2342-2352 (2008).
    18.
    J.L. He & M.C. Chiu, “Effect of oxygen on the electrochromism of RF reactive magnetron sputter deposited tungsten oxide”, Surface and Coatings Technology, Vol. 127, pp. 43-51 (2000).
    19.
    P. V. Ashrit, “Dry lithiation study of nanocrystalline, polycrystalline and amorphous tungsten trioxide thin-films”, Thin Solid Films, Vol. 385, pp. 81-88 (2001).
    20.
    J. Zhang, X.L. Wang, X.H. Xia, C.D. Gu, Z.J. Zhao, J.P. Tu, “Enhanced electrochromic performance of macroporous WO3 films formed by anodic oxidation of DC-sputtered tungsten layers”, Electrochimica Acta, Vol. 55, pp. 6953-6958 (2010).
    21.
    C. Bechinge, H Mufer, C Schafle, O. Sundberg, P. Leiderer, “Submicron metal oxide structures by a sol-gel process on patterned substrates”, Thin Solid Films, Vol. 366, pp. 135-138 (2000).
    22.
    F. Beck, M. Dahlhaus and J. Appl, “Electrochromic coatings for smart windows”, Surface Science, Vol. 23, pp. 1127-1131 (1993).
    23.
    A.K. Chawla, S. Singhal, H.O. Gupta, R. Chandra,” Effect of sputtering gas on structural and optical properties of nanocrystalline tungsten oxide films”, Thin Solid Films, Vol. 517, pp. 1042-1046 (2008).
    24.
    Chris Trimble, Michael De Vries, Jeffrey S. Hale, Daniel W. Thompson, Thomas E. Tiwald, John A. Woollam, “Infrared emittance modulation devices using electrochromic crystalline tungsten oxide, polymer conductor, and nickel oxide”, Thin Solid Films, Vol. 355, pp. 26-34 (1999).
    25.
    A. Subrahmanyam, A. Karuppasamy, “Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin film”, Solar Energy Materials & Solar Cells, Vol 91, pp. 266-274 (2007).
    26.
    S.A. Agnihotry, Rashmi, R. Ramchandran, S. Chandra, “Pre-existence of HxWO3 in e-beam deposited WO3 films”, Solar Energy Materials & Solar Cells, Vol. 36, pp. 289-294 (1995).
    27.
    J.L. Solisa, A. Hoel, V. Lantto, C.G. Granqvist, “Infrared spectroscopy study of electrochromic nanocrystalline tungsten oxide films made by reactive advanced gas deposition”, J. Appl. Phys., Vol. 89, pp. 2727-2732 (2001).
    28.
    D. Gogova, L. K.Thomas & B. Camin, “Comparative study of gasochromic and electrochromic effect in thermally evaporated tungsten oxide thin films”, Thin Solid Films, Vol. 517, pp. 3326-3331 (2009).
    29.
    P. K. Biswas, N. C. Pramanik, M. K. Mahapatra, D. Ganguli, J. Livage, “Optical and electrochromic properties of sol-gel WO3 films on conducting glass”, Materials Letters, Vol. 57, pp. 4429-4432 (2003).
    30.
    R. Solarska, B. D. Alexander, J. Augustynski, “Electrochromic and structural characteristics of mesoporous WO3 films prepared by a sol-gel method”, Journal of Solid State Electrochem, Vol. 8, pp. 748-755 (2004).
    31.
    I. Karakurt, J. Boneberg, P. Leiderer, “Electrochromic switching Of WO3 nanostructures and thin films”, Appl. Phys. A, Vol. 83, pp. 1-3 (2006).
    32.
    O. Pyper, R. Schollhorn1, J. J. T. M. Donkers, L. H. M. Krings, “Nanocrystalline structure of WO3 thinfilms prepared by the sol-gel technique, Materials Research Bulletin”, Vol. 33, pp. 1095-1101 (1998).
    33.
    M .G. Hutchins, N. A. Kamel, N. E. Kadry, A. A. Ramadan, K. Abdel-Hady, “Preparation and Propertiesof Electrochemically Deposited Tungsten Oxide Films”, Phys. stat. sol. (a), Vol. 175, pp. 991-1002 (1999).
    34.
    C. G. Granqvist, “Electrochromic tungsten oxide films Review of progress 1993–1998”, Solar EnergyMaterials & Solar Cells, Vol. 51, pp. 201-262 (2000).
    35.
    S. H. Lee, H. M. Cheong, J. G. Zhang, A. Mascarenhas, D. K. Benson, S. K. Deb, “Electrochromic mechanism in a-WO3-y thin films”, Appl. Phys. Letters, Vol. 74, pp. 242-244 (1999).
    36.
    Z. A. E. P. Vroon and C. I. M. A. Spee, “Sol-gel coating on large area glass sheets for electrochromic device”, Journal of Non-Crystalline Solids, Vol. 218, pp. 189-195 (1997).
    37.
    K. D. Lee, “Preparation and electrochromic properties of WO3 coating deposited by the sol-gel method”, Solar Energy Materials & Solar Cells, Vol. 57, pp. 21-30 (1999).
    38.
    L. H. M. Krings, W. Talen, “Wet chemical preparation and characterization of electrochromic WO3”, Solar Energy Materials & Solar Cells, Vol. 54, pp. 27-37 (1998).
    39.
    A. Cremonesi, D. Bersani, P. P. Lottici, Y. Djaoued, P. V. Ashrit, “WO3 thin films by sol-gel forelectrochromic applications”, Journal of Non-Crystalline Solids, Vol. 345 & 346, pp. 500-504 (2004).
    40.
    M. Deepa, T. K. Saxena, D. P. Singh, K. N. Sood, S. A. Agnihotry, “Spin coated versus dip coated electrochromic tungsten oxide films: Structure, morphology, optical and electrochemical properties”, Electrochimica Acta, Vol. 51, pp. 1974-1989 (2006).
    41.
    X. Sun, H. Cao, Z. Liu, J. Li, “Influence of annealing temperature on microstructure and optical properties of sol–gel derived tungsten oxide films”, Applied Surface Science, Vol. 255, pp. 8629-8633 (2009).
    42.
    E. A. Meulenkamp, “Mechanism of WO3 Electrodeposition from Peroxy‐Tungstate Solution“, Journal of the Electrochemical Society, Vol. 144, pp. 1664-1671 (1997).
    43.
    G. Leftheriotis, P. Yianoulis, “Development of electrodeposited WO3 films with modified surfacemorphology and improved electrochromic properties”, Solid State Ionics, Vol. 179, pp. 2192-2197 (2008).
    44.
    M. Deepa, M. Kar, S.A. Agnihotry, “Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance”, Thin Solid Films, Vol. 468, pp. 32-42 (2004).
    45.
    M. Deepa, A.K. Srivastava, T.K. Saxena, S.A. Agnihotry, “Annealing induced microstructural evolution of electrodeposited electrochromic tungsten oxide films”, Applied Surface Science, Vol. 252, pp. 1568-1580 (2005).
    46.
    H. Habazaki, Y. Hayashi, H. Konno, “Characterization of electrodeposited WO3 films and its application to electrochemical wastewater treatment”, Electrochimica Acta, Vol. 47, pp. 4181-4188 (2002).
    47.
    J.N. Yao, P. Chen a, A. Fujishima,” Electrochromic behavior of electrodeposited tungsten oxide thin films”, Journal of Electroanalytical Chemistry, Vol. 406, pp. 223-226 (1996).
    48.
    K. Yamanaka, H. Oakamoto,H. Kidou, "Peroxotungstic acid coated films for electrochromic display devices", Japanese Journal of Applied Physics, Vol. 25, No. 9, September, pp. 1420-1426 (1986).
    49.
    C.A. Tsao,” Fabrication of electrochromic tungsten oxide thin film by electrodeposition method assisted with zinc oxide nanwires”, National Taiwan Normal University, Master (2012, July).
    50.
    B. Ferrari, R. Moreno, “Electrophoretic deposition of aqueous alumina slip”, J. Eur. Ceram. Soc., Vol. 17, pp. 549-556 (1997).
    51.
    Y. Hirata, A. Nishimoto, Y. Ishihara, “Forming of alumina powder by electrophoretic deposition”, J. Ceram. Soc.Japan., Vol. 99, pp. 105-109 (1991).
    52.
    B. Ferrari, R. Moreno, “The conductivity of aqueous Al2O3 slips for electrophiretic deposition”, Mater. Lett., Vol. 28, pp. 353-355 (1996).
    53.
    F. k. Sauter, "Electrodeposition of dispersion hardened nickel-Al2O3 alloy", J. Electrochem. Soc., Vol. 110, pp. 557-560 (1963).
    54.
    D. W. Snaith and P. D. Groves, Transactions of the Institute of Metal Finishing, Vol. 50, pp. 95 (1972).
    55.
    N. Guglielmi, “Kinetics of the deposition of inert particles fromelectrolytic baths”, Journal of the Electrochemical Society, Vol. 119, pp. 1009-1012 (1972).
    56.
    K. Kurozaki, “effect of temperature on electrophoretic behaviour of complex ions of transition metals in aqueous solution of hydrochloric acid”, J. Jpn. Inst. Metals, Vol. 20, pp. 19-23 (1979).
    57.
    增子昇, 虫明克彥, “Electrodeposition of Ni-Al2O3 composites onrotating cylinder electrode”, 金屬表面技術, Vol. 28(10), pp. 534 (1977).
    58.
    增子昇, 虫明克彥, “Deposition kinetics of alumina particle during electroplating of nickel-alumina composites”, 金屬表面技術, Vol. 31(10), p. 523 (1980).
    59.
    增子昇, 虫明克彥, “Deposition kinetics of alumina particle during electroplating of nickel-alumina composites”, 金屬表面技術, Vol. 31(10), p. 541 (1980).
    60.
    增子昇, 虫明克彥, “分散型複合電析”, 電気化学および工業物理化学 : Denki Kagaku, Vol. 53(1), p. 45 (1985).
    61.
    J. P. Celis, J. R. Roos and C. Buelens, “A Mathematical Model for the Electrolytic Codeposition of Particles with a Metallic Matrix”, Journal of the Electrochemical Society, Vol. 134, pp. 1402-1408 (1987).
    62.
    J. Fransaer, J. P. Celis and J. R. Roos, “Analysis of the Electrolytic Codeposition of Non-Brownian Particles with Metals”, Journal of the Electrochemical Society, Vol. 139, pp. 413-425 (1992).
    63.
    J. P. Celis, J. R. Roos and C. Buelens and J. Fransear, “Mechanism of electrolytic composite plating: survey and trends”, Transactions of the Institute of Metal Finishing, Vol. 69(4), pp. 133-139 (1991).
    64.
    N. Sharma, M. Deepa, P. Varshney, S.A. Agnihotry, ”FTIR and absorption edge studies on tungsten oxide based precursor materials synthesized by sol-gel technique,” Journal of Non-Crystalline Solids, Vol. 306, pp. 129-137 (2002).
    65.
    M. Deepa, N. Sharma, P. Varshney, S. P. Varma, S. A. Agnihotry, “FTIR investigations of solid precursor materials for sol-gel deposition of WO3 based electrochromic films,” Journal of Materials Science Vol. 35, pp. 5313-5318 (2000).

    下載圖示
    QR CODE