研究生: |
郭翊 Kuo Yi |
---|---|
論文名稱: |
二極式電沉積法製備氧化鎢薄膜之電致色變性質研究 Electrochromic properties of tungsten oxide thin film deposited by two-electrode electrodeposited process |
指導教授: |
程金保
Cheng, Chin-Pao 鄭淳護 Cheng, Chun-Hu |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 氧化鎢薄膜 、電致色變 、電沉積法 、退火處理 |
英文關鍵詞: | tungsten oxide, electrochromic efficiency, electrodeposition, annealing |
論文種類: | 學術論文 |
相關次數: | 點閱:340 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以電沉積法製備氧化鎢電致色變薄膜,利用控制不同的電沉積溶液靜置時間,使鍍液產生時效作用,並將所沉積出之薄膜進行退火,最後進行電致色變特性評估。本實驗分三個部份,第一部份使用二極式電沉積系統,先求得電沉積起始電位,再決定電沉積參數,並且使用定電位法沉積氧化鎢薄膜;第二部份探討不同時效時間鍍液對於其所沉積氧化鎢薄膜的影響;第三部份將薄膜進行退火處理,並觀察退火前後對於著去色電荷進出量、著色效率與漏電流的影響。經由本實驗所量測得到的二極式電沉積起始電位為0.922 V,最佳著去色電位為2.5 V,利用1.5 V沉積電位條件沉積2分鐘所得到之薄膜厚度約為300 nm,表面粗糙度介於1.0-1.5 nm之間,退火後表面粗糙度則低於1 nm。經電致色變特性分析,沉積出最好的薄膜參數為鍍液時效4天後進行電沉積之薄膜(未退火),其穿透率差達54.3%,光密度差為0.48,著色效率可達37.3 cm2/coul,且去色回復率為95%。經100℃退火之薄膜其著色效率與回復率均下降,分別為14.1 cm2/coul與35%,由元件電性量測證實300℃退火之薄膜具有很高的漏電流與非常狹窄的遲滯區間,因而導致薄膜難以進行著去色反應。
In this study, electrodeposition method was used to fabricate WO3 electrochromic thin film. To obtain better electrochromic property of device, the solution was aged with different days before depositing process. Furthermore, some thin films were annealed to explore its effect on the electrochromic property of the device. The experiments of this study were divided into three parts. The first part was to use a two-electrode electrodepositing system to form WO3 thin film and find the start voltage of electrodeposition. The fixed voltage mode was used to fabricate the WO3 thin film. The second part was to explore the difference of the electrochromic property of thin film deposited by different ageing time. Finally, some thin films were annealed in the third part to observe the variety of properties including colored/bleached charge, coloring efficiency and current leakage difference. According to the experimental results, the starting voltage for depositing film is about 0.922 V and the best colored/bleached electric voltage is 2.5 V. The thickness of WO3 thin film is about 300 nm when the operating parameter has been controlled at 1.5 V and 2 minutes. The surface roughness of thin films before annealing is about 1~1.5 nm, and it reduced to about 1 nm after annealing process. The four days aged of solution before depositing thin film can achieve the best electrochromic properties, which makes the thin film have the transmittance difference of 54.3%, optical density difference of 0.48, and coloring efficiency of 37.3 cm2/coul and the recovery rate of 95%. The thin film annealed at 100℃ makes the devices have relatively poor color efficiency and recovery rate, about 14.1 cm2/coul and 35%, respectively. According to the electrical measurements of the films annealed at 300℃, it has been proved that the devices have higher current leakage and a narrow hysteresis region, which will make the colored and bleached of thin film is hard to develop.
1. http://web2.moeaboe.gov.tw/ECW/Policy/EnergyMeeting/defalult.htm
2.
鄭耕哲, ”電致色變智慧型節能窗之特性與發展現況”, 工業材料雜誌, 290期, pp.102-109 (2011).
3. http://windows.lbl.gov/comm_perf/Electrochromic/ec_tech.html.
4.
經濟部能源局, “變色節能玻璃可行性研究87年度工作報告”, (1998)。
5.
http://www.ec-ind.com/ec/MarketView.asp?ID=7&SortID=1.
6.
http://home.howstuffworks.com/smart-window4.htm.
7.
J. livage, D. Ganguli, “Sol-gel electrochromic coatings and devices: A review”, Solar Energy Materials &Solar Cell, Vol. 68, pp. 365-381 (2001).
8. http://zh.wikipedia.org/wiki/%E4%B8%89%E6%B0%A7%E5%8C%96%E9%92%A8.
9.
K. Bange, “Colouration of tungsten oxide films: A model for optically active coatings”, Solar Energy Materials & Solar Cells, Vol. 58, pp. 1-131 (1999).
10.
U. Muller, “Inorganic Structural Chemistry”, John Wiley & Sons, Chichester, U.K. (1993).
11.
E. Khoo, P.S. Lee, J. Ma, “Electrophoretic deposition (EPD) of WO3 nanorods for electrochromic application”, Journal of the European Ceramic Society, Vol. 30, pp. 1139-1144 (2010).
12.
S. K. Deb, “Optical and Photoelectric Properties and Color Centers in Thin Films of Tungsten Oxide”, Philosophical Magazine, Vol. 27, pp. 801-822 (1973).
13.
B. W. Faughnan, R. S. Crandall, P. M. Heyman, “Electrochromism in WO3 Amorphous Films”, RCA Review, Vol. 36, pp. 177-197 (1975).
14.
J.M. Honig, in: S. Trasatti (Ed), “Electrodes of Conductive Metallic Oxides”, Elsevier, Amsterdam, (1980).
15.
M. Giannouli,G.Leftheriotis, “The effect of precursor aging on the morphology and electrochromic performance of electrodeposited tungsten oxide films”, Solar Energy Materials & Solar Cells, Vol. 95, pp. 1932-1939 (2011).
16.
A.K. Srivastava, M. Deepa, S. Singh, R. Kishore, S.A. Agnihotry, “Microstructural and electrochromic characteristics of electrodeposited and annealed WO3 films”, Solid State Ionics, Vol. 176, pp. 1161-1168 (2005).
17.
M. Deepa, A.K. Srivastava, S.N. Sharma, Govind, S.M. Shivaprasad “Microstructural and electrochromic properties of tungsten oxide thin films produced by surfactant mediated electrodeposition”, Applied Surface Science, Vol. 254, pp. 2342-2352 (2008).
18.
J.L. He & M.C. Chiu, “Effect of oxygen on the electrochromism of RF reactive magnetron sputter deposited tungsten oxide”, Surface and Coatings Technology, Vol. 127, pp. 43-51 (2000).
19.
P. V. Ashrit, “Dry lithiation study of nanocrystalline, polycrystalline and amorphous tungsten trioxide thin-films”, Thin Solid Films, Vol. 385, pp. 81-88 (2001).
20.
J. Zhang, X.L. Wang, X.H. Xia, C.D. Gu, Z.J. Zhao, J.P. Tu, “Enhanced electrochromic performance of macroporous WO3 films formed by anodic oxidation of DC-sputtered tungsten layers”, Electrochimica Acta, Vol. 55, pp. 6953-6958 (2010).
21.
C. Bechinge, H Mufer, C Schafle, O. Sundberg, P. Leiderer, “Submicron metal oxide structures by a sol-gel process on patterned substrates”, Thin Solid Films, Vol. 366, pp. 135-138 (2000).
22.
F. Beck, M. Dahlhaus and J. Appl, “Electrochromic coatings for smart windows”, Surface Science, Vol. 23, pp. 1127-1131 (1993).
23.
A.K. Chawla, S. Singhal, H.O. Gupta, R. Chandra,” Effect of sputtering gas on structural and optical properties of nanocrystalline tungsten oxide films”, Thin Solid Films, Vol. 517, pp. 1042-1046 (2008).
24.
Chris Trimble, Michael De Vries, Jeffrey S. Hale, Daniel W. Thompson, Thomas E. Tiwald, John A. Woollam, “Infrared emittance modulation devices using electrochromic crystalline tungsten oxide, polymer conductor, and nickel oxide”, Thin Solid Films, Vol. 355, pp. 26-34 (1999).
25.
A. Subrahmanyam, A. Karuppasamy, “Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin film”, Solar Energy Materials & Solar Cells, Vol 91, pp. 266-274 (2007).
26.
S.A. Agnihotry, Rashmi, R. Ramchandran, S. Chandra, “Pre-existence of HxWO3 in e-beam deposited WO3 films”, Solar Energy Materials & Solar Cells, Vol. 36, pp. 289-294 (1995).
27.
J.L. Solisa, A. Hoel, V. Lantto, C.G. Granqvist, “Infrared spectroscopy study of electrochromic nanocrystalline tungsten oxide films made by reactive advanced gas deposition”, J. Appl. Phys., Vol. 89, pp. 2727-2732 (2001).
28.
D. Gogova, L. K.Thomas & B. Camin, “Comparative study of gasochromic and electrochromic effect in thermally evaporated tungsten oxide thin films”, Thin Solid Films, Vol. 517, pp. 3326-3331 (2009).
29.
P. K. Biswas, N. C. Pramanik, M. K. Mahapatra, D. Ganguli, J. Livage, “Optical and electrochromic properties of sol-gel WO3 films on conducting glass”, Materials Letters, Vol. 57, pp. 4429-4432 (2003).
30.
R. Solarska, B. D. Alexander, J. Augustynski, “Electrochromic and structural characteristics of mesoporous WO3 films prepared by a sol-gel method”, Journal of Solid State Electrochem, Vol. 8, pp. 748-755 (2004).
31.
I. Karakurt, J. Boneberg, P. Leiderer, “Electrochromic switching Of WO3 nanostructures and thin films”, Appl. Phys. A, Vol. 83, pp. 1-3 (2006).
32.
O. Pyper, R. Schollhorn1, J. J. T. M. Donkers, L. H. M. Krings, “Nanocrystalline structure of WO3 thinfilms prepared by the sol-gel technique, Materials Research Bulletin”, Vol. 33, pp. 1095-1101 (1998).
33.
M .G. Hutchins, N. A. Kamel, N. E. Kadry, A. A. Ramadan, K. Abdel-Hady, “Preparation and Propertiesof Electrochemically Deposited Tungsten Oxide Films”, Phys. stat. sol. (a), Vol. 175, pp. 991-1002 (1999).
34.
C. G. Granqvist, “Electrochromic tungsten oxide films Review of progress 1993–1998”, Solar EnergyMaterials & Solar Cells, Vol. 51, pp. 201-262 (2000).
35.
S. H. Lee, H. M. Cheong, J. G. Zhang, A. Mascarenhas, D. K. Benson, S. K. Deb, “Electrochromic mechanism in a-WO3-y thin films”, Appl. Phys. Letters, Vol. 74, pp. 242-244 (1999).
36.
Z. A. E. P. Vroon and C. I. M. A. Spee, “Sol-gel coating on large area glass sheets for electrochromic device”, Journal of Non-Crystalline Solids, Vol. 218, pp. 189-195 (1997).
37.
K. D. Lee, “Preparation and electrochromic properties of WO3 coating deposited by the sol-gel method”, Solar Energy Materials & Solar Cells, Vol. 57, pp. 21-30 (1999).
38.
L. H. M. Krings, W. Talen, “Wet chemical preparation and characterization of electrochromic WO3”, Solar Energy Materials & Solar Cells, Vol. 54, pp. 27-37 (1998).
39.
A. Cremonesi, D. Bersani, P. P. Lottici, Y. Djaoued, P. V. Ashrit, “WO3 thin films by sol-gel forelectrochromic applications”, Journal of Non-Crystalline Solids, Vol. 345 & 346, pp. 500-504 (2004).
40.
M. Deepa, T. K. Saxena, D. P. Singh, K. N. Sood, S. A. Agnihotry, “Spin coated versus dip coated electrochromic tungsten oxide films: Structure, morphology, optical and electrochemical properties”, Electrochimica Acta, Vol. 51, pp. 1974-1989 (2006).
41.
X. Sun, H. Cao, Z. Liu, J. Li, “Influence of annealing temperature on microstructure and optical properties of sol–gel derived tungsten oxide films”, Applied Surface Science, Vol. 255, pp. 8629-8633 (2009).
42.
E. A. Meulenkamp, “Mechanism of WO3 Electrodeposition from Peroxy‐Tungstate Solution“, Journal of the Electrochemical Society, Vol. 144, pp. 1664-1671 (1997).
43.
G. Leftheriotis, P. Yianoulis, “Development of electrodeposited WO3 films with modified surfacemorphology and improved electrochromic properties”, Solid State Ionics, Vol. 179, pp. 2192-2197 (2008).
44.
M. Deepa, M. Kar, S.A. Agnihotry, “Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance”, Thin Solid Films, Vol. 468, pp. 32-42 (2004).
45.
M. Deepa, A.K. Srivastava, T.K. Saxena, S.A. Agnihotry, “Annealing induced microstructural evolution of electrodeposited electrochromic tungsten oxide films”, Applied Surface Science, Vol. 252, pp. 1568-1580 (2005).
46.
H. Habazaki, Y. Hayashi, H. Konno, “Characterization of electrodeposited WO3 films and its application to electrochemical wastewater treatment”, Electrochimica Acta, Vol. 47, pp. 4181-4188 (2002).
47.
J.N. Yao, P. Chen a, A. Fujishima,” Electrochromic behavior of electrodeposited tungsten oxide thin films”, Journal of Electroanalytical Chemistry, Vol. 406, pp. 223-226 (1996).
48.
K. Yamanaka, H. Oakamoto,H. Kidou, "Peroxotungstic acid coated films for electrochromic display devices", Japanese Journal of Applied Physics, Vol. 25, No. 9, September, pp. 1420-1426 (1986).
49.
C.A. Tsao,” Fabrication of electrochromic tungsten oxide thin film by electrodeposition method assisted with zinc oxide nanwires”, National Taiwan Normal University, Master (2012, July).
50.
B. Ferrari, R. Moreno, “Electrophoretic deposition of aqueous alumina slip”, J. Eur. Ceram. Soc., Vol. 17, pp. 549-556 (1997).
51.
Y. Hirata, A. Nishimoto, Y. Ishihara, “Forming of alumina powder by electrophoretic deposition”, J. Ceram. Soc.Japan., Vol. 99, pp. 105-109 (1991).
52.
B. Ferrari, R. Moreno, “The conductivity of aqueous Al2O3 slips for electrophiretic deposition”, Mater. Lett., Vol. 28, pp. 353-355 (1996).
53.
F. k. Sauter, "Electrodeposition of dispersion hardened nickel-Al2O3 alloy", J. Electrochem. Soc., Vol. 110, pp. 557-560 (1963).
54.
D. W. Snaith and P. D. Groves, Transactions of the Institute of Metal Finishing, Vol. 50, pp. 95 (1972).
55.
N. Guglielmi, “Kinetics of the deposition of inert particles fromelectrolytic baths”, Journal of the Electrochemical Society, Vol. 119, pp. 1009-1012 (1972).
56.
K. Kurozaki, “effect of temperature on electrophoretic behaviour of complex ions of transition metals in aqueous solution of hydrochloric acid”, J. Jpn. Inst. Metals, Vol. 20, pp. 19-23 (1979).
57.
增子昇, 虫明克彥, “Electrodeposition of Ni-Al2O3 composites onrotating cylinder electrode”, 金屬表面技術, Vol. 28(10), pp. 534 (1977).
58.
增子昇, 虫明克彥, “Deposition kinetics of alumina particle during electroplating of nickel-alumina composites”, 金屬表面技術, Vol. 31(10), p. 523 (1980).
59.
增子昇, 虫明克彥, “Deposition kinetics of alumina particle during electroplating of nickel-alumina composites”, 金屬表面技術, Vol. 31(10), p. 541 (1980).
60.
增子昇, 虫明克彥, “分散型複合電析”, 電気化学および工業物理化学 : Denki Kagaku, Vol. 53(1), p. 45 (1985).
61.
J. P. Celis, J. R. Roos and C. Buelens, “A Mathematical Model for the Electrolytic Codeposition of Particles with a Metallic Matrix”, Journal of the Electrochemical Society, Vol. 134, pp. 1402-1408 (1987).
62.
J. Fransaer, J. P. Celis and J. R. Roos, “Analysis of the Electrolytic Codeposition of Non-Brownian Particles with Metals”, Journal of the Electrochemical Society, Vol. 139, pp. 413-425 (1992).
63.
J. P. Celis, J. R. Roos and C. Buelens and J. Fransear, “Mechanism of electrolytic composite plating: survey and trends”, Transactions of the Institute of Metal Finishing, Vol. 69(4), pp. 133-139 (1991).
64.
N. Sharma, M. Deepa, P. Varshney, S.A. Agnihotry, ”FTIR and absorption edge studies on tungsten oxide based precursor materials synthesized by sol-gel technique,” Journal of Non-Crystalline Solids, Vol. 306, pp. 129-137 (2002).
65.
M. Deepa, N. Sharma, P. Varshney, S. P. Varma, S. A. Agnihotry, “FTIR investigations of solid precursor materials for sol-gel deposition of WO3 based electrochromic films,” Journal of Materials Science Vol. 35, pp. 5313-5318 (2000).