簡易檢索 / 詳目顯示

研究生: 簡采寧
Chie, Tsai-Ning
論文名稱: 奈米粒子光散射之二氧化鈦光阻層應用於染料敏化太陽能電池
Photoresist layer of titanium dioxide nanoparticles applied to the light scattering of the dye-sensitized solar cell
指導教授: 郭金國
Kuo, Chin-Guo
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 73
中文關鍵詞: 二氧化鈦奈米粒子奈米管陣列光散射光阻層染料敏化太陽能電池
英文關鍵詞: Titanium dioxide, nanoparticle, nanotubes, Light scattering, photoresist layer, Dye-sensitized solar cells
論文種類: 學術論文
相關次數: 點閱:113下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將以二次電化學陽極處理法製備二氧化鈦奈米管薄膜,運用於正照光式的染料敏化太陽能電池之中。過程中將以純度鈦薄板(99.7%)作為陽極;鉑(Pt)為陰極,浸泡在氟化銨(Ammonium Fluoride, NH4F) 溶質及過氧化氫(Hydrogen peroxide, H2O2)、乙二醇(Ethylene Glycol, EG)溶劑所調配之電解液中進行二氧化鈦奈米管做為光電極的光阻層;利用溶膠凝膠法製備二氧化鈦奈米粒子作為光電極的光散射層與黏著劑的使用;將實驗得到可透光的二氧化鈦薄膜,運用薄膜轉移至FTO導電玻璃上,製備出正照光型式的染料敏化太陽能電池,探討其對於染料敏化太陽能電池光電轉換效率之影響。
    在吸附N719染料後,於AM 1.5模擬太陽光照射下(100 mW/cm2),藉由光電流-電壓(I-V)、入射單色光子-電子轉化效率的量測(IPCE)檢測,當管長在4小時管長為29μm時,最大Voc為0.751 V,Jsc為15.14 mA/cm2,FF為0.74,可得到最佳之光電轉換效率達8.413%,為本實驗室最高效率之結果。

    In this study, the major purpose is to apply by two-step electrochemical method prepared of titanium dioxide nanotubes films in the front side of illumination-type dye-sensitized solar cells.
    To produce TiO2 nanotube, we conducted the experiment through electrochemical method by using high purity titanium (99.7%) as anode and platinum as cathode. The electrolyte is a mixed solution, which is a kind of electrolyte consisting of Ammonium fluoride (NH4F), Hydrogen peroxide (H2O2) and Ethylene glycol (EG) electrolyte solution carried out the deployment of titania nanotubes as photoelectrode photoresist layer. Using sol-gel process of titanium dioxide nanoparticles formulated as a photoelectrode use of light-scattering layer and adhesived.
    After the adsorption of the dye N719 exposed it to the light. The intensity of the light at AM 1.50 (100 mW / cm2). Utilized photo current – voltage, incident photon-to- current conversion efficiency (IPCE) measurement, when the nanotube length in 4 hours property of the light is 29 μm long with Voc = 0.751 V, Jsc=15.14mA/cm2, FF=0.74 has obtain the best of the photoelectric conversion efficiency of η=8.413% percent, which is measured the highest photoelectric conversion efficiency.

    誌 謝 i 中文摘要 ii 英文摘要 iii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池簡介 2 1.3 研究動機與目的 4 第二章 理論分析與文獻回顧 7 2.1 染料敏化太陽能電池(Dye-sensitized solar cells, DSSC) 7 2.2 光散射層與光阻層 11 2.2.1 奈米零維材料之光散射層 11 2.2.2 奈米一維材料之光阻層 14 2.3 二氧化鈦(Titanium dioxide, TiO2 ) 17 2.3.1 二氧化鈦奈米管陣列(TiO2 nanotube array, TiNT-array) 20 2.2.3 二氧化鈦奈米粒子(TiO2 nanoparticals, TiNPs) 23 2.4 染料光敏劑 25 第三章 實驗方法及儀器應用理論 29 3.1 實驗藥品與實驗儀器 29 3.2 實驗流程 31 3.2.1 試片前處理處理 32 3.2.2 陽極氧化法製備二氧化鈦奈米管陣列(TiNT-array) 32 3.2.3 FTO透明玻璃的前、後處理 34 3.2.4 TiO2 nanoparticle (TiNPs) Sol-Gel黏著劑的製備 35 3.2.5 染料的配製 36 3.2.6 製備二氧化鈦光敏電極 36 3.3 高溫煅燒 38 3.4 電解液配置與元件封裝 39 3.4.1 電解液配製 39 3.4.2 元件的封裝 39 3.5 材料特性分析 41 3.5.1 X-射線繞射光譜(X-ray diffraction, XRD) 41 3.5.2 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 42 3.5.3 能量分散式X光光譜(Energy Dispersive X-ray Spectrometer, EDS) 43 3.5.4 紫外光/可見光光譜儀(UV-Vis spectrometer) 43 3.6 太陽能電池數據分析 45 3.6.1 電壓-電流特性曲線(I-V Curve)量測 45 3.6.2 入射單色光子-電子轉化效率(Incident monochromatic Photo-to-Current conversion Efficiency, IPCE) 47 第四章 結果與討論 49 4.1 二氧化鈦奈米管陣列薄膜與奈米粒子 49 4.2 陽極氧化法之二氧化鈦奈米管陣列薄膜特性分析 50 4.2.1 一次陽極之二氧化鈦奈米管 50 4.2.2 二次陽極之二氧化鈦奈米管 52 4.2.3 不同反應電壓之二氧化鈦奈米管 53 4.2.4 不同反應時間之二氧化鈦奈米管 55 4.2.5 二氧化鈦奈米粒子黏貼奈米管 58 4.3 能量分散式X光光譜(EDS)分析 60 4.4 X光繞射(XRD)分析 61 4.5 紫外光可見光光譜儀(UV-Vis)透光率分析 62 4.6 染料敏化太陽能電池之效率影響 63 4.6.1 入射光電子轉換效率之探討 63 4.6.2 不同照管徑與管長光電流-電壓曲線 64 第五章 結論 67 參考文獻 68

    [1] M. Grätzel, 2001. “Photoelectrochemical cells”, Nature. 414,338-344.
    [2] Masson, G., Latour, M., & Biancardi, D. 2012.
    “Global market outlook for photovoltaics until 2016”. http://www.pv-magazine.com/fileadmin/uploads/PDFs/Global_Market_Outlook_201 6.pdf .European Photovoltaic Industry Association. pp.44.
    [3] Green, M. A., Emery, K., Hishikawa, Y., Warta, W., & Dunlop, E. D. 2014. “Solar cell efficiency tables. Progress in photovoltaics: research and applications”, Progress in Photovoltaics: Research and Applications. 23,1-9.
    [4] Tsubomura, H. Matsumura, M. Nomura, T. Amamiya, Y. 1976. “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell”, Nature. 261,402-403.
    [5] O’Regan, B. Grätzel, M. 1991. “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature .353,737-740.
    [6] Grätzel, M. 2001.“Photoelectrochemical cells”, Nature. 414,338-344.
    [7] Grätzel, M. 2004. “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, J. Photochem. Photobio. A 164,3-14.
    [8] Grätzel, M. 2005.“Solar energy conversion by dye-sensitized photovoltaic cells”, Inorg. Chem. 44,6841-6851.
    [9] Anders Hagfeldt, Gerrit Boschloo, Licheng Sun, Lars Kloo, and Henrik Pettersson. 2010 “Dye-Sensitized Solar Cells”, Chem. Rev. 110, 6595–6663.
    [10] Roberson, N.A.:Lian, T. 2004. “Ultrafast electron injection from metal polypyridyl complexes to metal-oxide nanocrystalline thin films”, Coord. Chem. Rev. 248, 1231−1246.
    [11] Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara and S. Yanagida 2005. “Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization”, Phys. Chem. Chem. Phys. 7,4157-4163.
    [12] Y. Suzuki, S. Ngamsinlapasathian, R. Yoshida, S. Yoshikawa, 2006. “Partially nanowire-structured TiO2 electrode for dye-sensitized solar cells”, Cent. Eur. J. Chem. 4,476-488.
    [13] C. J. Lin, W. Y. Yu and S. H. Chien, 2009. “Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye- sensitized solar cells”, J. Mater. Chem. 20,1073–1077
    [14] L. Miranda, A. Chianese, 2009 “Optimal Effect of TiO2 Particles Size on the Current –Potential Behaviour of Dye Sensitized TiO2 Solar Cells”, 9th International Conference on Chemical and Process Engineering, 17,1-9.
    [15] L. Zhaohui, S. Xunjia, H. Genliang, B. Song, X. Zhou and J. Haipeng, 2013. “Mixed photoelectrode based on spherical TiO2 nanorod aggregates for dye-sensitized solar cells with high short-circuit photocurrent density”, RSC Adv, 3,8474–8479.
    [16] Z. Xiaomin, Y. Dongliang, S. Ye, L. Dongdong, X. Huapeng, Y. Chunyan, L. Linfeng, 2014. “Weihua Maa, Xufei Zhu,Fabrication of large diameter TiO2 nanotubes for improved photoelectrochemical performance”, Materials Research Bulletin. 60,348–352.
    [17] L. Xiaolin, G. Min, C. Jianjun, L. Jia, T. Yuenhong, C. Xianfeng and H. Haitao. 2014. “Large-diameter titanium dioxide nanotube arrays as a scattering layer for high-efficiency dye-sensitized solar cell”, Nanoscale Research Letters. 9,1-5.
    [18] C. Bohren and D. Huffman, 1983.“Absorption and scattering of light by small particles”, John Wiley & Sons, New York.
    [19] H. Hulst, 1981. “Light Scattering by Small Particles”, Dover Publications, New York.
    [20] M. Kerker, 1969. “The Scattering of Light and Other Electromagnetic Radiation”, Academic, New Yor.
    [21] A. Usami, 1997. “Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrochemical cell”, Chemical Physics Letters, 277,105–108.
    [22] Y. Lin, L. Yang, J.G. Jia, X.R. Xiao, X.P. Li, X.W. Zhou. 2008. “Light harvesting enhancement for dye-sensitized solar cells by novel anode containing cauliflower-like TiO2 spheres”, Journal of Power Sources. 182,370-376.
    [23] Z. Qifeng, M. Daniel, L. Jolin, A. J. Samson, and C. Guozhong, 2012. “Applications of light scattering in dye-sensitized solar cells”. Phys. Chem. 14,14982–14998.
    [24] K. Nakayama, T. Kubo and Y. Nishikitani, 2008. “Deposited TiO2 nanotube light-scattering layers of electrophoretically dye-sensitized solar cells” ,Jpn. J. Appl. Phys. 47,6610–6614.
    [25] V. Thavasi, V. Renugopalakrishnan, R. Jose, & S. Ramakrishna. 2009. “Controlled electron injection and transport at materials interfaces in dye sensitized solar cells” , Materials Science and Engineering: R: Reports. 63,81-99.
    [26] Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara, S. Yanagida, 2005.“Dye-Sensitized TiO2 Nanotube Solar Cells: Fabrication and Electronic Characterization”, Phys. Chem. Chem. Phys. 7, 4157-4163.
    [27] L. Xiaolin, G. Min, C. Jianjun, L. Jia, T. Yuenhong, C. Xianfeng and H. Haitao. 2014. “Large-diameter titanium dioxide nanotube arrays as a scattering layer for high-efficiency dye-sensitized solar cell”. Nanoscale Research Letters. 9,362,1-5.
    [28] S. Ngamsinlapasathian, S. Sakulkhaemaruethai, S. Pavasupree, A. Kitiyanan, T. Sreethawong, Y. Suzuki, S. Yoshikawa, 2004. “Highly Efficient Dye-Sensitized Solar Cell Using Nanocrystalline Titania Containing Nanotube Structure”, J. Photochem. Photobiol. 164, 145–151.
    [29] J. H. Yoon, S. R. Jang, R. Vittal, J. Lee, K. J. Kim, 2006.“TiO2 Nanorods as Additive to TiO2 Film for Improvement in the Performance of Dye-Sensitized Solar Cells”, J. Photochem. Photobiol. 180,184-188.
    [30] B. Tan, Y. Wu. 2006.“Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle/Nanowire Composites“, J Phys. Chem. B 110, 15932–15938.
    [31] C. J. Lin, W. Y. Yu, S. H. Chien.2007.“Effect of Anodic TiO2 Powder as Additive on Electron Transport Properties in Nanocrystalline TiO2 Dye-Sensitized Solar Cells”, Appl. Phys. Lett. 91,233120,1-3.
    [32] K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank. 2007. “Enhanced Charge- Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays”, Nano Lett. 7,69-74.
    [33] K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, A. J. Frank, 2003. “Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells”, J. Phys. Chem. B 107,7759-7767.
    [34] J. Bisquert, D. Cahen, G. Hodes, S. Ruhle, A. Zaban, 2004. “Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate Mesoporous Dye-Sensitized Solar Cells” , J. Phys. Chem. B 108,8106-8118.
    [35] G. K. Mor, Oomman K. Varghese, Maggie Paulose, Niloy Mukherjee and Craig A. 2003, “Grimes: Fabrication of tapered, conical-shaped titania nanotubes”, Journal of Materials Research , 18 ,2588 - 2593
    [36] P. Hoyer. 1996. “Formation of a Titanium Dioxide Nanotube Array Langmuir” , American Chemical Society ,12 ,1411-1413.
    [37] T. Kasuga M. Hiramatsu A. Hoson, T. Sekino, K. Niihara. 1998. “Formation of titanium oxide nanotube” Langmuir,14,3160–3163.
    [38] V. Zwilling; M. Aucouturier; E. Darque-Ceretti, 1999. “Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach ”, Electrochim. Acta. 45,921-929.
    [39] D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, E. C. Dickey. 2001. “Titanium oxide nanotube arrays prepared by anodic oxidation", J. Mater. Res. 16,3331-3334.
    [40] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, 2005. “Enhanced Photocleavage of Water Using Titania Nanotube Arrays”. Nano Letters 5,191-195.
    [41] Q. Cai, M. Paulose, O. K. Varghese, C. A. Grimes, 2005. “The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotube Arrays by Anodic Oxidation”,J. Mater. Res. 20,230-236.
    [42] G. K. Mor; O. K. Varghese; M. Paulose; N. Mukherjee; C. A. Grimes, 2003. “Fabrication of tapered, conical-shaped titania nanotubes”, J. Mater. Res.18, 2588-2593.
    [43] 高廉,2004,奈米光觸媒,出版社:台北市,五南出版社。
    [44] C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, 1997.“Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications”, J. Am. Ceram. Soc. 80,3157-3171.
    [45] H. Anders, B. Gerrit, S. Licheng, K. Lars, and P. Henrik, 2010. “Dye-Sensitized Solar Cells”, Chem. Rev. 110,6595–6663
    [46] M. Mishra, K.R. Fischer, P. Bauerle, 2009. “Metal-free organic dye for Dye-Sensitized Solar Cells:From struture:Property relationships to design rules”,Angew. Chem. Int.Ed.48,2474-2499.
    [47] K. Kalyanasundaram, M. Grätzel, 1998. “Applications for functionalized transition metal complexes in photonic and optoelectronic devices”, Coord. Chem. Rev. 177,347-414.
    [48] Galoppini, E. 2004. “Linkers for anchoring sensitizers to semiconductor nanoparticles” . Coord. Chem. Rev.248,1283-1297.
    [49] N. Papageorgiou, W. F. Maier, M. Grätzel, 1997. “An Iodine/Triiodide Reduction Electroatlyst for aqueous and Organic Media”, J .Electrochem. Soc, 144,876.
    [50] 詹博為,“奈米多孔性二氧化鈦光電極應用於染料敏化太陽能電池之研究”,國立雲林科技大學,碩士論文,2012。
    [51] 朱哲武,“水熱法合成二氧化鈦一維結構與光觸媒特性的探討”,國立中興大學,碩士論文,2009。
    [52] 林倞,“有機太陽能電池之介面與表面形態工程”,國立台灣大學,碩士論文,2010。
    [53] 林進榮、游文岳、簡淑華,“二氧化鈦奈米管陣列薄膜用於染料敏化太陽能電池”,中央研究院化學研究所。
    [54] L. Yuekun, S. Lan, C. Yicong, Z. Huifang, L. Changjian, and W. C. Joannie .2006. “Effects of the Structure of TiO2 Nanotube Array on Ti Substrate on Its Photocatalytic Activity”, Journal of The Electrochemical Society, 153,123-127.
    [55] 陳榮輝、鄭寶樹、陳文揚、蘇錦梅, “MMA/MAA/TiO2抗靜電光學奈米複合材料之合成與物性的研究”,高雄師大學報,32,1-18,2012。

    無法下載圖示 本全文未授權公開
    QR CODE