簡易檢索 / 詳目顯示

研究生: 蔡依芸
Yi-Yun Tsai
論文名稱: 利用螢光二氧化矽奈米管作為DNA雜交之生化反應器及其分析
Utilization of Fluorescent Silica Nanotubes as DNA Hybridization Bioreactors and Their Analysis
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 中文
中文關鍵詞: 奈米管DNA雜交戊二醛
英文關鍵詞: Nanotubes, DNA Hybridization, Glutaraldehyde
論文種類: 學術論文
相關次數: 點閱:296下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是以螢光二氧化矽奈米管作為模擬DNA晶片來檢測疾病。其中,所選擇的硬式模板(AAO)擁有固定形狀及孔徑大小之優勢,因此可利用多孔性孔洞之陽極氧化鋁(AAO)和二氧化矽的溶膠-凝膠(sol-gel)溶液,來合成二氧化矽奈米管(SiNTs),且二氧化矽奈米管本身具有容易修飾及特殊的中空結構,所以可以在內、外部做些修飾來固定生物分子或分離物質的反應。在此論文中,我們藉由所加入具螢光性質的水溶性Ⅱ-Ⅵ半導體奈米粒子CdSe(ZnS)於管內,使得到螢光二氧化矽奈米管後,再與標的有機染料DNA作雜交反應,來獲得有螢光混色效果的二氧化矽奈米管。最後,在我們實驗的結果中,發現所合成的二氧化矽奈米管,可利用短小化特點以較低濃度DNA樣品來達到作為高靈敏度探針之目的。

    In this paper, we utilized silica nanotubes mimicing biochips to detect diseases. Silica nanotubes were prepared by a sol-gel reaction using the anodic aluminum oxide membrane (AAO) as a template. By utilizing template methods, a large number of hollow structure nanotubes were synthesized and their sizes were controlled precisely. The silica nanotubes have a number of advantages that make them potential candidates for biological applications. They have inner voids that can be immobilized with biomolecules. Also, they have distinct inner and outer surfaces that can be functionalized differentially. Hence, nanotubes can be used as smart nanophase extractors.
    In our experiment, the fluorescent silica nanotubes were synthesized by dopping water-soluble nanocrystal CdSe(ZnS). They were then coupled to fluorescent DNA to observe fluorescence change. Finally, we found that our nanotubes have high sensitivity in biochip analysis. So, we combined QDs-tagged silica nanotubes with fluorescent DNA as analytical tools to detect cancer disease.

    總目錄................................................ I 圖表目錄.............................................. IV 中文摘要 ............................................. VII Abstract ............................................. VIII 致謝.................................................. IX 第一章 緒論............................................1 1.1 引言...............................................1 1.2 簡介奈米材料.......................................2 1.3 奈米材料的製備方法.................................5 1.3.1 模板合成法.......................................6 1.4 一般二氧化矽材料之合成及其應用.....................8 1.4.1 二氧化矽(SiO2)材料之合成方法.....................8 1.4.2 二氧化矽材料的應用性.............................8 1.4.2.1 二氧化矽奈米粒子的應用.........................8 1.4.2.2 二氧化矽奈米管之應用...........................9 1.5 生物晶片之發展.....................................10 1.5.1 生物晶片原理及其分類.............................11 1.5.1.1 生物晶片原理...................................11 1.5.1.2 生物晶片分類...................................11 1.5.2 基因晶片製造技術.................................13 1.5.3 基因晶片特色與應用...............................16 1.5.3.1 基因晶片特色...................................16 1.5.3.2 基因晶片之應用.................................16 第二章 實驗............................................18 2.1 研究動機與目的.....................................18 2.2 製備二氧化矽(SiO2)螢光奈米管.......................19 2.2.1 藥品與儀器.......................................19 2.2.2 實驗步驟.........................................20 2.3 以二氧化矽奈米管作為DNA 雜交(DNA Hybridization)的生物反應器...................................................21 2.3.1 實驗藥品及儀器...................................21 2.3.2 實驗步驟.........................................23 2.4 利用於二氧化矽奈米管內,以多顏色的水溶性CdSe(ZnS)奈米粒子結合螢光DNA雜交反應..................................24 2.4.1 實驗步驟.........................................24 2.5 使用ArrayWoRxe Biochip Reader儀器來分析所合成的螢光二氧化矽奈米管...........................................26 2.5.1 實驗藥品及儀器...................................26 2.5.2 分析水溶性奈米粒子於二氧化矽奈米管的步驟.........26 2.5.3 分析DNA於二氧化矽奈米管雜交的步驟................26 2.5.4 分析管內螢光奈米粒子和DNA雜交反應................28 第三章 結果與討論......................................29 3.1 合成各種不同螢光顏色的二氧化矽奈米管...............29 3.1.1 溶膠-凝膠黏度對於二氧化矽奈米管型態結構之影響....29 3.1.2 製備螢光二氧化矽奈米管...........................30 3.1.3 以研磨方式控制二氧化矽奈米管的長短...............34 3.2 以二氧化矽奈米管作為DNA雜交的生物反應器............34 3.2.1 以二氧化矽奈米管作DNA雜交反應....................34 3.2.2 二氧化矽奈米管結合水溶性奈米粒子與DNA雜交反應作為模擬基因晶片的混色分析工具.................................37 3.3 以ArrayWoRxe Biochip Reader儀器分析水溶性量子點結合螢光DNA雜交反應之二氧化矽奈米管..........................39 第四章 結論與未來展望..................................44 結論...................................................44 未來展望...............................................46 第五章 參考文獻........................................47

    1. (a) Martin, C. R.; Kohli, P. Nat. Rev. Drug Discovery 2003, 2, 29. (b) Alivisatos, A. P. Nat. Biotechnol. 2004, 22, 47.(c) Niemeyer, C. M. Angew. Chem. Int. Ed. Engl. 2001, 40, 4128.
    2. (a) Thomas, M.; Klibanov, A. M. Proc. Natl. Acad. Sci. 2003, 100, 138.(b) Yamada, T.; Iwasaki, Y.; Tada, H.; Iwabuki, H.; Chuah, M. KL; VandenDriessche, T.; Fukuda, H.; Kondo, A.; Ueda, M.; Seno, M.; Tanizawa, K.; Kuroda, S. Nature Biotechnol. 2003, 21, 885.(c) Salem, A. K.; Searson, P. C.; Leong, K. W. Nature Mater. 2003, 2, 668.(d) Pantarotto, D.; Briand, J. P.; Prato, M.; Bianco, A. Chem. Commun. 2004, 1, 16.
    3. (a) Cui, Y.; Wei, Q. Q.; Park, H. K. ; Lieber, C. M. Science 2001, 293, 1289.(b) Taton, T. A.; Lu, G.; Mirkin, C. A. J. Am. Chem. Soc. 2001, 123, 5164.(c) Shim, M.; Kam, N. W. S.; Chen, R. J.; Li, Y. M.; Dai, HJ. Nano Lett. 2002, 2, 285.
    4. (a) Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013.(b) Chan, W. C.; Nie, S. Science 1998, 281, 2016. (c) Lin, C. C.; Yeh, Y. C.; Yang, C. Y.; Chen, C. L.; Chen, G. F.; Chen, C. C.; Wu, Y. C. J. Am. Chem. Soc. 2002, 124, 3508.
    5. (a) Zhang, M.; Bando, Y.; Wada, K. Journal of Material Research 2000, 15, 387.(b) Gasparac, R.; Kohli, P.; Mota, M. O.; Trofin, L.; Martin, C. R. Nano Letters 2004, 4, 513.(c) Nabeta, M.; Sano, M. Langmuir 2005, 21, 1706.
    6. Iijima, S. Nature 1991, 354, 56.
    7. Baughman, R. H.; Zakhidov, A. A.;de Heer, W. A. Science 2002, 297, 787.
    8. (a) Shi Kam, N. W.; Jessop, T. C.; Wender, P. A.; Dai, H. J. Am. Chem. Soc. 2004, 126, 6850.(b) Wang, J.; Liu, G.; Jan, M. R. J. Am. Chem. Soc. 2004, 126, 3010.(c) Moghaddam, M. J.; Taylor, S.; Gao, M.; Huang, S.; Dai, L.; McCall, M. J. Nano Letters 2004, 4, 89.
    9. Nishizawa, M.; Menon, V. P.; Martin, C. R. Science 1995, 268, 700.
    10. Zhang, M.; Bando, Y.; Kurashima, K. Journal of Materials Science Letters 1999, 18, 1911.
    11. (a) Alivisatos, A. P. Science 1996, 271, 933.(b) Chen, C. C.; Herhold,
    A. B.; Johnson, C. S.; Alivisatos, A. P. Science 1997, 276, 398.
    12. Glinka, Y. D.; Lin, S. H.; Hwang, L. P.; Chen, Y. T.; Tolk, N. H.
    Phys. Rev. B 2001, 64, 085421.
    13. (a) Jr., M. B.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013.(b) Mattoussi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Mikulec, F. V.; Bawendi, M. G. J. Am. Chem. Soc. 2000,122,12142.(c) Yong, H. M.; Gao, X. H.;Su, J. Z.; Nie, S.M. Nature Biotechnology 2001, 19, 631.(d) Goldman, E. R.; Balighian, E. D.; Mattoussi, H.; Kuno, M. K.; Mauro, J. M. H.; Tran, P. T.; Anderson, G. P. J. Am. Chem. Soc.,2002, 124, 6378.(e) Goldman, E. R.; Clapp, A. R.; Anderson, G. P.; Uyeda, H. T.; Maure, J. M.; Medintz, I. L.; Mattoussi, H. Anal. Chem. 2004, 76, 684.
    14. (a) Alivisatos, A. P. Science 1996, 271, 933.(b) Chen, C. C.; Herhold, A. B.; Johnson, C. S.; Alivisatos, A. P. Science 1997, 276, 398.
    15. 王崇人; 科學發展月刊 2002, 354, 48.
    16. (a) Steigrwald, M. L.; Alivisatos, A. P.; Gibson, J. M.; Harris, T. D.; Korten, R.; Muller, A. J.; Thayer, A. M.; Duncan, T. M.; Douglass, D. C.; Brus, L. E. J. Am. Chem. Soc. 1988, 110, 3046.(b) Alivisatos, A. P.;Harris, T. D.; Carroll, D. J.; Steigrwald, M. L.; Brus, L. E. J. Chem. Phys. 1989, 90, 3463
    17. Murrary, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.
    18. Peng, X.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59.
    19. Caruso, R. A.; Schattka, J. H.; Greiner, A. Adv. Mater. 2001, 13, 1577.
    20. (a) Martin, C. R. Science 1994, 266, 1961. (b) Pileni, M. P. Nature Materials 2003, 2, 145.
    21. (a) Steinle, E. D.; Mitchell, D. T.; Wirtz, M.; Lee, S. B.; Young, V. Y.; Martin, C. R. Anal. Chem. 2002, 74, 2416.(b) Yu, S.F.; Lee, S. B.; Martin, C. R. Anal. Chem. 2003, 75, 1239.
    22. Hulteen, J. C.; Martin, C. R. J. Mater. Chem. 1997, 7, 1075.
    23. (a) Jirage, K. B.; Hulteen, J. C.; Martin, C. R. Science 1997, 278, 655. (b) Steinle, E. D.; Mitchell, D. T.; Wirtz, M.; Lee, S. B.; Young, V. Y.; Martin, C. R. Anal. Chem. 2002, 74, 2416.
    24. (a) Taylor, J. R.; Fang, M. M.; Nie, S. M. Anal. Chem. 2000, 72, 1970. (b) Christophe Barb’e; Bartlett, J.; Kong, L. G.; Finnie, K.; Lin, H. Q.;Larkin, M.; Calleja, S.; Bush, A.; Calleja, G. Adv. Mater. 2004, 16, 1955.
    25. (a) Mitchell, D. T.; Lee, S. B.; Trofin, Lacramioara; Li, N. C.; Nevanen, T. K.; Soderlund, H.; Martin, C. R. J.Am. Chem. Soc. 2002, 124, 11864. (b) Yang,H. H.; Zhang, S. Q.; Chen, X. L.; Zhuang, Z. X.; Xu, J. G.; Wang, X. R. Anal. Chem. 2004, 76,1316.
    26. Lin, V. S. Y.; Motesharei, K.; Dancil, K. P. S.; Sailor, M. J.; Ghadiri, M. R. Science 1997, 278, 840.
    27.(a) Lin, V. S. Y.; Lai, C. Y.; Huang, J. G.; Song, S. A.; Xu, S. J. Am. Chem. Soc. 2001, 123, 11510.(b) Qhobosheane, M.; Santra, S. H.; Zhang, P.; Tan, W. H. Analyst 2001, 126, 1274.(c) Luckarift, H. R.; Spain, J. C.; Naik, R. R.; Stone, M. O. Nat. Biotechnol. 2004, 22, 211.
    28. Kneuer, C.; Sameti, M.; Bakowsky, U.; Schiestel, T.; Schirra, H.;
    Schmidt, H.; Lehr, C. M. Bioconjuate Chem. 2000, 11, 926.
    29. Lai, C. Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y. J. Am. Chem. Soc. 2003, 125, 4451.
    30. Radu, D. R.; Lai, C. Y.; Wiench, J. W.; Pruski, M.; Lin, V. S. Y. J. Am. Chem. Soc 2004, 126, 1640.
    31. Radu, D. R.; Lai, C. Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S. Y. J. Am. Chem. Soc 2004, 126, 13216.
    32. Harada, M.; Adachi, M. Adv. Mater. 2000, 12, 839.
    33. Jirage, K. B.; Hulteen, J. C.; Martin, C. R. Science 1997, 278, 655.
    34. Hou, S. F.; Wang, J. H.; Martin, C. R. Nano Lett. 2005, 5, 231.
    35. Chen, C. C.; Liu, Y. C.; Wu, C. H.; Yeh, C. C.; Su, M. T.; Wu, Y. C. Adv. Mater. 2005, 4, 4.
    36. Jain, K. K. Science 2001, 294, 621.
    37. (a) Liu, Y.; Rauch, C. B.; Stevens, R. L.; Lenigk, R.; Yang, J. N.; Rhine, D. B.; Grodzinski, P. Anal. Chem. 2002, 74, 3063.(b) Nyholm, L. Analyst 2005, 130, 599.
    38. Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. J. Phys. Chem. B. 1997, 101, 9463.
    39. (a) Fodor, S. P. A.; Read, J. L.;Pirrung, M. C.; Stryer, L.; Lu, A.
    T.;Solas, D. Science 1991, 251, 767.(b) Fodor, S. P. A.; Rava, R. P.; Huang,X. C.; Pease, A. C.; Holmes, C. P.; Adams, C. L. Nature 1993, 364, 555.(c) Pease, A. C.; Solas, D.;Sullivan, E. J.; Cronin, M. T.; Holmes, C. P.; Fodor, S. P. A. Proc. Natl. Acad. Sci. 1994, 91, 5022.
    40. (a) Yershov, G.; Barsky, V.; Belgovskiy, A.; Kirillov, E.; Kreindlin, E.; Ivanov, I.; Parinov, S.; Guschin, D.; Drobishev, A.; Dubiley, S.; Mirzabekov, A. Proc. Natl. Acad. Sci. 1996, 93, 4913.(b) Cheung, V. G.; Morley, M.; Aguilar, F.; Massimi, A.; Kucherlapati, R.; Childs, G. Naure 1999, 21, 15.
    41. Niemeyer, C. M.; Blohm, D. Angew. Chem. Int. Ed. 1999, 38, 2865.(b) Okamoto, T.; Suzuki, T.; Yamamoto, N. Nature 2000, 18, 438.
    42. (a) Jain, K. K. Science 2001, 294, 621.(b) Thompson, M.; Furtado, L. M. Analyst 1999, 124, 1133.
    43. Peng, X. G.; Wilson, T. E.; Alivisatos, A. P.; Schultz, P. G. Angew. Chem. Int. Ed. Engl. 1997, 36, 145.
    44. Matsumoto, F.; Nishio, K.; Masuda, H. Adv. Mater. 2004, 16, 2105.
    45. (a) Fixe, F.; Dufva, M.; Telleman, P.; Christensen, C. B. V. Nucleic Acids Research 2004, 32, e9.(b) Xu, S. P.; Ji, X. H.; Xu, W. Q.; Li, X. L.; Wang, L. Y.; Bai, Y.; Zhao, B.; Ozaki, Y. Analyst 2004, 129, 63.(c) Zhang, G. J.; Tanii, T.; Funatsu, T.; Ohdomari, I. Chem Commun 2004, 7, 786.(d)Yi, H. M.; Wu, L.Q.; Ghodssi, R.; Rubloff, G. W.; Payne, G. F.; Bentley, W. E. Langmuir 2005, 21, 2104.(e) Hou, S. F.; Wang, J. H.; Martin, C. R. Nano Letters 2005, 5, 231.
    46. Vlassiouk, I.; Krasnoslobodtsev, A.; Smirnov, S.; Germann, M. Langmuir 2004, 20, 9913.
    47. Han, M. Y.; Gao, X. H.; Su, J. Z.; Nie, S. M. Nat. Biotechnol. 2001, 19, 631.
    48. Gerion, D.; Chen, F. Q.; Kannan, B.; Fu, A.; Parak, W. J.; Chen, D. J.; Majumdar, A.; Alivisatos, A. P. Anal. Chem. 2003, 75, 4766.

    無法下載圖示
    QR CODE