簡易檢索 / 詳目顯示

研究生: 程士彰
論文名稱: 適用於高維度影像之相位展開法則電路設計
Design of Phase Unwrapping Circuit for High Dimensional Images
指導教授: 黃文吉
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 57
中文關鍵詞: 數位全像顯微鏡系統晶片設計可程式化邏輯閘陣列相位展開法則
論文種類: 學術論文
相關次數: 點閱:154下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在提出一個相位展開法則硬體電路架構,此硬體架構適用於嵌入式的數位全像顯微鏡(Digital Holographic Microscopy, DHM)系統,能夠加速數位全像顯微鏡系統的相位展開運算來立即取得還原後的影像相位圖。本硬體架構採用以快速傅立葉轉換為基礎的相位展開法則來設計,採用此演算法的原因在於實現出來的硬體架構所需花費的硬體資源比較少,並且對於影像中受到雜訊破壞而產生誤差的影像相位數值,也有能力修正這些錯誤的相位資訊。本硬體架構主要可分為兩種單元所組成,一種是運算單元,另一種是儲存單元;其中所有的運算單元皆以管線化架構的方式實現,而記憶單元則使用on-chip RAM作為提供來源資料以及儲存計算途中的暫時資料或是計算完畢的最終結果。
    最後我們以現場可程式化邏輯閘陣列(Field Programmable Gate Array ,FPGA) 為開發平台實現並實際測量硬體電路的資源消耗以及運算時間;實驗的結果顯示了本論文所提出的相位展開法則硬體架構能夠得到正確的還原結果,並且有效的大幅降低相位展開運算所需要花費的時間以及擁有低硬體資源消耗的優點,因此適合使用於嵌入式的DHM系統。

    中文摘要.....i 誌謝.....ii 目錄.....iii 第一章 緒論.....1 1.1 研究動機與目的.....1 1.2 研究方法.....3 1.3 全文架構.....5 第二章 基礎理論及技術背景介紹.....6 2.1 相位展開演算法運算流程.....6 2.2 FPGA 系統設計.....9 第三章 系統架構.....13 3.1 相位展開法則之硬體電路架構.....13 3.2 嵌入式記憶體(On-chip RAM).....14 3.3 轉換前單元(Pre-transform Unit).....16 3.4 快速傅立葉轉換單元(FFT Unit).....22 3.5 轉換後單元(Post-transform Unit).....28 3.6 軟硬體共同設計(Hardware Software Co-Design)....31 第四章 實驗數據與效能比較.....34 4.1 開發平台與實驗環境介紹.....34 4.2 實驗數據的呈現與討論.....39 第五章 結論與未來展望.....54 參考著作.....55

    [1] Altera Corporation, FFT MegaCore Function User Guide, 2011.
    [2] Altera Corporation, Floating Point Mega Function User Guide, 2011.
    [3] Altera Corporation, NIOS II Processor Reference Handbook, 2011.
    [4] J.M. Bioucas-Dias and G. Valadao, “Phase Unwrapping via Graph Cuts,” IEEE Trans. Image Processing, Vol. 16, pp.684-697, 2007.
    [5] S. Braganza and M. Leeser, ”An efficient implementation of a phase unwrapping kernel on reconfigurable hardware,” Proc. International Conference on Application-Specific Systems, Architectures and Processors, pp.138-143, 2008.
    [6] S. Braganza and M. Leeser, ”Implementing Phase Unwrapping Using Field Programmable Gate Arrays or Graphics Processing Units: A Comparison,” Proc. Second International Workshop on High-Performance Reconfigurable Computing Technology and Applications, Nov. 2008.
    [7] H. Calderon, C. Elena, and S. Vassiliadis, “Soft Core Processors and Embedded Processing: a survey and analysis,” Proc. Safe ProRisc Workshop, pp.483-488, 2005.
    [8] S. Chavez, Q.S. Xiang, and L. An, “Understanding Phase Maps in MRI: A New Cutline Phase Unwrapping Method,” IEEE Trans. Medical Imaging, Vol. 21, pp.966-977, 2002.

    [9] E. Cuche, P. Marquet and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel of-axis holograms,” Appl. Opt., Vol. 38, pp. 6994–7001, 1999.
    [10] D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software, 605 Third Avenue, New York, NY, 10158-0012: Wiley Inter-Science, 1998.
    [11] S. Hauck, and A. Dehon, Reconfigurable Computing, Morgan Kaufmann, 2008.
    [12 ] V. Katkovnik, J. Astola, K. Egiazarian, “Phase Local Approximation (PhaseLa) Technique for Phase Unwrap From Noisy Data,” IEEE Trans. Image Processing, Vol. 17, pp.833-846, 2008.
    [13] P.A. Karasev, D.P. Campbell, and M.A. Richards, ”Obtaining a 35x Speedup in 2D Phase Unwrapping Using Commodity Graphics Processors,” Proc. IEEE Radar Conference, pp. 574-578, April 2007.
    [14] Y. C. Lin and C. J. Cheng, “Determining the refractive index profile of micro-optical elements using transflective digital holographic microscopy,” J. Opt. 12, 115402, 2010.
    [15] Y. C. Lin, C. J. Cheng and T.-C. Poon, “Optical sectioning with a low coherence phase-shifting digital holographic microscope,” Appl. Opt. 50(7), B25-B30, 2011.
    [16] Z. Li, Z. Bao, and Z. Suo, “A joint image coregistration, phase noise suppression, and phase unwrapping method based on subspace projection for multibaseline InSAR systems,” IEEE Trans. Geoscience and Remote Sensing, Vo. 45, pp.584-591, 2007.
    [17] Loffeld, O. , Nies, H. , Knedlik, S. , Yu Wang , “Phase Unwrapping for SAR Interferometry—A Data Fusion Approach by Kalman Filtering,” IEEE Trans. Geoscience and Remote Sensing, Jan 2008.
    [18] C. J. Mann, L. Yu, C.-M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Optics Express, Vol. 13, pp.8693-8698, 2005.
    [19] P. Mistry, S. Braganza, D. Kaeli, and M. Leeser, ”Accelerating Phase Unwrapping and Affine Transformations for Optical Quadrature Microscopy using CUDA,” Proc. Second Workshop on General Purpose Processing on Graphics Processing Units, 2009.
    [20] M.D. Pritt and J.S. Shipman, “Least-Squares Two-Dimensional Phase Unwrapping Using FFT’s,” IEEE Trans. Geoscience and Remote Sensing, Vol. 32, pp.706-708, 1994.
    [21] D. Parshall and M. K. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Applied Optics, Vol. 45, pp.451-459, 2006.
    [22] T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Exp. 16 (16), 11776-11781, 2008.

    下載圖示
    QR CODE