簡易檢索 / 詳目顯示

研究生: 石雅欣
Shih, Ya-Hsin
論文名稱: 以痤瘡桿菌刺激單核球細胞為模式探討山苦瓜葉萃取物之區分物抑制IL-8生成
Subfractions of wild bitter melon leaf extracts inhibit interleukin-8 induction by P. acnes in THP-1 cells
指導教授: 蔡帛蓉
Tsai, Po-Jung
林麗純
Lin, Lie-Chwen
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 139
中文關鍵詞: 痤瘡桿菌山苦瓜葉介白素8抗發炎
英文關鍵詞: P. acnes, wild bitter melon leaf, interleukin 8, anti-inflammation
DOI URL: https://doi.org/10.6345/NTNU202204448
論文種類: 學術論文
相關次數: 點閱:260下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 痤瘡桿菌(P. acnes),屬於革蘭氏陽性厭氧菌(gram-positive anaerobic bacterium),是存在人類皮膚毛囊、口腔、大腸、結膜的正常菌群之一,為尋常性痤瘡皮膚毛囊中的主要致病菌,也與眼內炎、心內膜炎、角膜炎、前列腺發炎癌化等發炎性疾病相關。痤瘡桿菌活化細胞膜上類鐸受體(TLR),啟動下游MyD88與MAPK等訊息傳遞,增加NF-κB與AP-1等轉錄因子活性,造成促發炎介質的生成。
    苦瓜是常見的蔬菜,文獻指出苦瓜(Momordica charantia L.)具有降血糖、降血脂、抗氧化、抗腫瘤、抗菌、抗發炎等作用,其活性成份也陸續被分離出來,像是類黃酮、酚酸、三萜、共軛次亞麻油酸等。先前研究指出,山苦瓜葉甲醇萃取物能夠抑制THP-1人類單核球細胞受痤瘡桿菌刺激之IL-8 (CXCL8)、TNF-α、IL-1β產生,並能降低細胞核內轉錄因子NF-κB,在動物實驗中亦能減緩ICR小鼠耳朵受痤瘡桿菌刺激所引起之紅腫發炎現象。
    本篇研究分析山苦瓜葉之營養成分並接續分離山苦瓜葉甲醇萃取物,以抑制化學趨化激素IL-8為指標,希望找出具有抗發炎活性之山苦瓜葉區分物與成份。 實驗結果顯示,花蓮一號山苦瓜葉含有水份81.22%、粗蛋白6.26%、粗脂肪1.22%、粗纖維1.92%、灰份2.85%、維生素C 1920.14 μg/g drybasis。另外,山苦瓜葉甲醇萃取物之正已烷層區分物Hex-2m能夠顯著抑制痤瘡桿菌誘導之IL-8生成,抑制ERK、JNK、p38蛋白質磷酸化,並且能降低小鼠耳朵受痤瘡桿菌刺激所引起之紅腫發炎現象。透過化學呈色法、NMR、GC-FID、LC-MS分析出山苦瓜葉活性區分物Hex-2m中含有三萜類化合物,脂肪酸部分以α-次亞麻油酸(α-linolenic acid, C18:3 n-3)為主要成份。除此之外,GC-MS資料庫比對到squalene、phytol、維生素K1、維生素E (α-tocopherol、γ-tocopherol)、β-ionone與dihydroactinidiolide等化合物亦是活性區分物Hex-2m中之成份。

    Propionibacterium acnes (P. acnes) is a gram-positive bacterium that forms part of the normal flora of the human skin, oral cavity, large intestine, and conjunctiva. P. acnes plays an important role in acne vulgaris and other diseases, including endophthalmitis, endocarditis, keratitis, and inflammation of the prostate leading to cancer. P. acnes can stimulate toll-like receptor (TLR) on the cell membrance, active MyD88 and MAPK signaling, and increase the activaction of transcription factors NF-κB and AP-1. The signal transduction of TLR leads to the expression of pro-inflammatory mediators.
    Bitter melon (Momordica charantia L.) is a common vegetable and has been reported to possess hypoglycemic, antihyperlipidemic, antioxidant, anticancer, antibacterial, and anti-inflammatory properties. The bioactive compounds in bitter melon, such as flavonoids, phenolic acids, triterpenoids, and conjugated linolenic acids, have been identified. Previous study showed that methanolic extracts from wild bitter melon leaf inhibited P. acnes-induced IL-8 (also called CXCL8), TNF-α, IL-1β, and NF-κB in THP-1 cells and suppressed the inflammatory response in vivo.
    In this study, we analyzed the nutrient contents of Hualien-1 wild btiier melon leaf (H1L) and tried to find the active subfractions and compounds followd by the inhibitory effects on P. acnes-induced IL-8. Our resultes showed the nutrient contents of H1L were 81.22% moisture, 6.26% crude protein, 1.23% crude fat, 1.92% crude fiber, 2.85% ash, and vitamin C 1920.14 μg/g dry basis, respectively. The subfraction, Hex-2m, inhibited the level of P. acnes-induced IL-8 and suppressed ERK, JNK, p38 protein phosphorylation in THP-1 cells. This subfraction also showed an anti-inflammatory activity in P. acnes-stimulated ears of ICR mice. Triterpenoids, fatty acids, including α-linolenic acid, were measured in this subfraction by using colorimetric method, NMR, GC-FID and LC-MS. Squalene, phytol, vitamin K1, α-tocopherol, γ-tocopherol, β-ionone, and dihydroactinidiolide were identified by GC-MS with the library data.

    目錄 i 圖目錄 v 表目錄 ix 中文摘要 x Abstract xi 縮寫表 xii 第一章 緒論 1 第一節、研究動機 1 第二節、研究目的 2 第二章 文獻探討 3 第一節 痤瘡桿菌與發炎 3 壹、前言 3 貳、發炎反應 4 參、TLR singnaling pathway 5 肆、痤瘡桿菌與尋常性痤瘡(Acne vulgaris) 7 一、痤瘡的流行病學 7 二、痤瘡的成因 8 三、痤瘡的治療 11 第二節 實驗材料 13 壹、山苦瓜 13 貳、抗發炎藥物 17 第三章 材料與方法 20 第一節 實驗架構 20 第二節 研究材料 21 壹、藥品與試劑 21 貳、儀器設備 30 第三節 實驗方法 32 壹、樣品萃取與分離純化 32 一、山苦瓜葉甲醇粗萃物製備 32 二、山苦瓜葉區分物製備 32 貳、山苦瓜葉成份分析 38 一、水份含量測定 38 二、粗蛋白含量測定 38 三、粗脂肪含量測定 39 四、灰份含量測定 39 五、粗纖維含量測定 40 六、維生素C含量測定 40 七、總多酚含量測定 41 八、脂肪酸組成分析 41 九、三萜類含量測定 43 十、LC-MS分析 43 十一、GC-MS分析 44 參、細胞培養 45 肆、細菌培養 46 伍、抑菌實驗 48 陸、細胞存活率測定-MTT assay 48 柒、in vitro抑制IL-8生成之活性評估-ELISA assay 49 捌、山苦瓜葉區分物對MAPK蛋白質磷酸化之影響 50 玖、in vivo抗發炎活性評估 54 拾、統計分析 58 第四章 結果 59 第一節 山苦瓜葉萃取物萃取率 59 第二節 山苦瓜葉成份分析 60 壹、山苦瓜葉的營養成份 60 貳、山苦瓜葉甲醇萃取物總多酚含量 61 參、山苦瓜葉區分物成份分析 62 第三節 In vitro study-抗發炎藥物 70 一、細胞存活率測定 70 二、抗發炎藥物抑制IL-8生成之活性評估 70 三、抑菌實驗-luteolin 73 第四節 In vitro study-山苦瓜葉區分物 74 壹、山苦瓜葉partition後各層區分物 74 一、細胞存活率測定 74 二、Partition後各層區分物抑制IL-8生成之活性評估 74 貳、正丁醇層區分物 77 一、細胞存活率測定 77 二、正丁醇層區分物抑制IL-8生成之活性評估 77 參、乙酸乙酯層區分物 80 一、細胞存活率測定 80 二、乙酸乙酯層區分物抑制IL-8生成之活性評估 80 肆、正已烷層區分物 84 一、細胞存活率測定 84 二、正己烷層區分物抑制IL-8生成之活性評估 84 三、抑菌實驗-Hex-2m 84 四、Hex-2m對MAPK訊息傳遞蛋白磷酸化之影響 90 第五節 In vivo study 94 第五章 討論 96 第一節 山苦瓜葉區分物in vitro及in vivo抗發炎活性評估 96 第二節 山苦瓜葉成份探討 99 第三節 總結 106 第六章 參考文獻 108 第七章 附錄 120

    全中和(2007)。藥食兩用的東方蔬菜-苦瓜。科學發展,418,10-13。
    李宥苡(2012)。山苦瓜萃取物暨其區分物對於痤瘡桿菌誘導發炎反應的影響。
    國立臺灣師範大學人類發展與家庭學系營養科學與教育組碩士論文。
    黃育亭(2011)。山苦瓜萃取物抑制黑色素生成及抗光老化效應的評估。
    國立臺灣師範大學人類發展與家庭學系營養科學與教育組碩士論文。
    徐 瑨(2011)。自山苦瓜單離植物雌激素及其化學鑑定與生物活性探討。
    國立臺灣大學生化科技學系博士論文。
    趙哲毅(2003)。苦瓜活化過氧化體增殖劑活化受器及改變脂質代謝相關基因之表現。
    國立台灣大學微生物與生化學研究所博士論文。
    吳敏綺、邱婉婷、徐自菱、林文勝(2008)。中西醫會診-青春痘。台北市:書
    泉出版社。
    張展維、江睿玲、鄭奕帝(2005)。痤瘡(Acne Vulgaris)的治療。長庚藥學學
    報,12(2),1-8。
    黃玲珠(2006)。美容營養學。新北市:華立圖書股份有限公司。
    行政院衛生署2010-2011台灣國民營養健康狀況變遷調查結果。
    Abd El All, H. S., Shoukry, N. S., El Maged, R. A., & Ayada, M. M. (2007). Immunohistochemical expression of interleukin 8 in skin biopsies from patients with inflammatory acne vulgaris. Diagn Pathol, 2, 4.
    Abdou, A., Abdallah, H., Mohamed, M., Fawzy, G., & Abdel-Naim, A. (2013). A new anti-inflammatory triterpene saponin isolated from Anabasis setifera. Archives of Pharmacal Research, 36(6), 715-722.
    Adebamowo, C. A., et al. (2008). Milk consumption and acne in teenaged boys. J Am Acad Dermatol, 58(5), 787-793.
    Adityan, B., Kumari, R., & Thappa, D. M. (2009). Scoring systems in acne vulgaris. Indian J Dermatol Venereol Leprol, 75(3), 323-326.
    Akihisa, T., et al. (2010). Anti-inflammatory and chemopreventive effects of triterpene cinnamates and acetates from shea fat. J Oleo Sci, 59(6), 273-280.
    Aktan, S., Ozmen, E., & Sanli, B. (2000). Anxiety, depression, and nature of acne vulgaris in adolescents. Int J Dermatol, 39(5), 354-357.
    Alexeyev, O., Olsson, J., & Elgh, F. (2009). Is There Evidence for a Role of Propionibacterium acnes in Prostatic Disease? Urology, 73(2), 220-224.
    All, H. S. A. E., Shoukry, N. S., Maged, R. A. E., & Ayada, M. M. (2007). Immunohistochemical expression of interleukin 8 in skin biopsies from patients with inflammatory acne vulgaris. Diagnostic Pathology, 2(4).
    Andor, P., Istvan, N., & Lajos, K. (2005). Innate Immunity in the Skin: How Keratinocytes Fight Against Pathogens. Current Immunology Reviews, 1(1), 29-42.
    Arancibia, S. A., et al. (2007). Toll-like receptors are key participants in innate immune responses. Biol Res, 40(2), 97-112.
    Auffray, B. (2007). Protection against singlet oxygen, the main actor of sebum squalene peroxidation during sun exposure, using Commiphora myrrha essential oil. Int. J. Cosmet. Sci., 29, 23-29.
    Brodersen, D. E., et al. (2000). The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell, 103(7), 1143-1154.
    Calder, P. C. (2011). Fatty acids and inflammation: The cutting edge between food and pharma. European Journal of Pharmacology 668, S50–S58.
    Chao, C. Y., & Huang, C. J. (2003). Bitter gourd (momordica charantia) extract activates peroxisome proliferator-activated receptors and upregulates the expression of the acyl CoA oxidase gene in H4IIEC3 hepatoma cells. J Biomed Sci., 10, 782-791.
    Charlton-Menys, V., & Durrington, P. N. (2007). Squalene synthase inhibitors: clinical pharmacology and cholesterol-lowering potential. Drugs, 67, 11-16.
    Checker, R., et al. (2012). Potent Anti-Inflammatory Activity of Ursolic Acid, a Triterpenoid Antioxidant, Is Mediated through Suppression of NF-κB, AP-1 and NF-AT. PLoS ONE, 7(2), e31318.
    Chen, B. T., et al. (2012). Anti-inflammatory effects of a polyphenols-rich extract from tea (Camellia sinensis) flowers in acute and chronic mice models. Oxid Med Cell Longev, 2012, 537923.
    Chen, P. H., et al. (2012). Bitter melon seed oil-attenuated body fat accumulation in diet-induced obese mice is associated with cAMP-dependent protein kinase activation and cell death in white adipose tissue. J Nutr, 142(7), 1197-1204.
    Chinetti, G., Fruchart, J. C., & Staels, B. (2000). Peroxisome proliferator-activated receptors (PPARs): Nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm. res., 49, 497–505.
    Choi, E. M., & Lee, Y. S. (2010). Luteolin suppresses IL-1β-induced cytokines and MMPs production via p38 MAPK, JNK, NF-kappaB and AP-1 activation in human synovial sarcoma cell line, SW982. Food and Chemical Toxicology, 48(10), 2607-2611.
    Choi, J. S., Kim, H. Y., Seo, W. T., Lee, J. H., & Cho, K. M. (2012). Roasting Enhances Antioxidant Effect of Bitter Melon (Momordica charantia L.) Increasing in Flavan-3-ol and Phenolic Acid Contents. Food Sci. Biotechnol., 21(1), 19-26.
    Chou, Y. M., & Chao, C. Y. (2008). Wild Bitter Gourd Extracts Activate the Transcription Factor PPARγ and Inhibit LPS-Induced Inflammatory Responses in RAW264.7 Cells. Nutr Sci J, 33(3), 108-115.
    Chuang, C. Y., et al. (2006a). Fractionation and identification of 9c, 11t, 13t-conjugated linolenic acid as an activator of PPAR in bitter gourd (Momordica charantia L.) . J Biomed Sci, 13, 763-772.
    Chuang, C. Y., et al. (2006b). Fractionation and identification of 9c, 11t, 13t-conjugated linolenic acid as an activator of PPARalpha in bitter gourd (Momordica charantia L.). J Biomed Sci, 13(6), 763-772.
    Cordain, L., et al. (2002). Acne vulgaris: a disease of Western civilization. Arch Dermatol, 138(12), 1584-1590.
    Cunliffe, W. J. (1998). Management of adult acne and acne variants. J Cutan Med Surg, 2 Suppl 3, 7-13.
    Dasu, M. R., Park, S., Devaraj, S., & Jialal, I. (2009). Pioglitazone inhibits Toll-like receptor expression and activity in human monocytes and db/db mice. Endocrinology 150, 3457–3464.
    Mar Caja, M., Preston, C., Menzel, M., Kempf, M., & Schreier, P. (2009). Online gas chromatography combustion/pyrolysis-isotope ratio mass spectrometry (HRGC-C/P-IRMS) of (+/-)-Dihydroactinidiolide from tea ( Camellia sinensis ) and rooibos tea ( Aspalathus linearis ). J Agric Food Chem, 57(13), 5899-5902.
    Dessinioti, C., & Katsambas, A. D. (2010). The role of Propionibacterium acnes in acne pathogenesis: facts and controversies. Clin Dermatol, 28(1), 2-7.
    Dhabhar, F. S. (2003). Stress, leukocyte trafficking, and the augmentation of skin immune function. Ann N Y Acad Sci, 992, 205-217.
    Di Landro, A., et al. (2012). Family history, body mass index, selected dietary factors, menstrual history, and risk of moderate to severe acne in adolescents and young adults. J Am Acad Dermatol, 67(6), 1129-1135.
    Drott, J. B., Alexeyev, O., Bergstrom, P., Elgh, F., & Olsson, J. (2010). Propionibacterium acnes infection induces upregulation of inflammatory genes and cytokine secretion in prostate epithelial cells. BMC Microbiol, 10, 126.
    Dutta, P. K., Chakravarty, A. K., Chowdhury, U. S., & Pakrashi, S. C. (1981). Vicine, a favism-inducing toxin from Momordica charantia Linn. Indian Journal of Chemistry, 20B, 669-671.
    El-Akawi, Z., Abdel-Latif, N., & Abdul-Razzak, K. (2006). Does the plasma level of vitamins A and E affect acne condition? Clin Exp Dermatol, 31(3), 430-434.
    Farrar, M. D., & Ingham, E. (2004). Acne: inflammation. Clin Dermatol, 22(5), 380-384.
    Fischer, N., et al. (2013). Deciphering the intracellular fate of Propionibacterium acnes in macrophages. Biomed Res Int, 2013, 603046.
    Furie, M. B., & Randolph, G. J. (1995). Chemokines and Tissue Injury. American Journal ofPathology, 146(6).
    Garg, A., et al. (2001). Psychological stress perturbs epidermal permeability barrier homeostasis: implications for the pathogenesis of stress-associated skin disorders. Arch Dermatol, 137(1), 53-59.
    Girardi, M. (2007). Cutaneous perspectives on adaptive immunity. Clin Rev Allergy Immunol, 33(1-2), 4-14.
    Grange, P. A., et al. (2009). Production of superoxide anions by keratinocytes initiates P. acnes-induced inflammation of the skin. PLoS Pathog, 5(7), e1000527.
    Grange, P. A., Raingeaud, J., Calvez, V., & Dupin, N. (2009). Nicotinamide inhibits Propionibacterium acnes-induced IL-8 production in keratinocytes through the NF-kappaB and MAPK pathways. J Dermatol Sci, 56(2), 106-112.
    Green, J., & Sinclair, R. D. (2001). Perceptions of acne vulgaris in final year medical student written examination answers. Australas J Dermatol, 42(2), 98-101.
    Harinantenaina, L., et al. (2006). Momordica charantia constituents and antidiabetic screening of the isolated major compounds. Chem. Pharm. Bull., 54(7), 1017-1021.
    Harris, R. E., Beebe-Donk, J., Doss, H., & Burr Doss, D. (2005). Aspirin, ibuprofen, and other non-steroidal anti-inflammatory drugs in cancer prevention: a critical review of non-selective COX-2 blockade (review). Oncol Rep, 13(4), 559-583.
    Hennessy, A. A., Ross, R. P., Devery, R., & Stanton, C. (2011). The Health Promoting Properties of the Conjugated Isomers of a-Linolenic Acid. Lipids, 46, 105-119.
    Himmelfarb, J., et al. (2007). Gamma-tocopherol and docosahexaenoic acid decrease inflammation in dialysis patients. J Ren Nutr, 17(5), 296-304.
    Horax, R., Hettiarachchy, N., & Chen, P. (2010). Extraction, quantification, and antioxidant activities of phenolics from pericarp and seeds of bitter melons (Momordica charantia) harvested at three maturity stages (immature, mature, and ripe). J Agric Food Chem, 58(7), 4428-4433.
    Hsu, C., Hsieh, C. L., Kuo, Y. H., & Huang, C. J. (2011). Isolation and identification of cucurbitane-type triterpenoids with partial agonist/antagonist potential for estrogen receptors from Momordica charantia. J Agric Food Chem, 59(9), 4553-4561.
    Hsu, C., et al. (2012). Wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) extract and its bioactive components suppress Propionibacterium acnes-induced inflammation. Food Chem, 135(3), 976-984.
    Huang, C. J., & Wu, M. C. (2002). Differential effects of foods traditionally regarded as 'heating' and 'cooling' on prostaglandin E(2) production by a macrophage cell line. J Biomed Sci, 9(6 Pt 2), 596-606.
    Huang, Z. R., Lin, Y. K., & Fang, J. Y. (2009). Biological and Pharmacological Activities of Squalene and Related Compounds: Potential Uses in Cosmetic Dermatology. Molecules, 14, 540-554.
    Jumtee, K., Komura, H., Bamba, T., & Fukusaki, E. (2011). Predication of Japanese green tea (Sen-cha) ranking by volatile profiling using gas chromatography mass spectrometry and multivariate analysis. J Biosci Bioeng, 112(3), 252-255.
    Jung, J. Y., et al. (2010a). The influence of dietary patterns on acne vulgaris in Koreans. Eur J Dermatol, 20(6), 768-772.
    Jung, J. Y., et al. (2010b). The influence of dietary patterns on acne vulgaris in Koreans. European Journal of Dermatology, 20(6), 768-772.
    Jung, M., et al. (2012). Polyphenon-60 displays a therapeutic effect on acne by suppression of TLR2 and IL-8 expression via down-regulating the ERK1/2 pathway. Archives of Dermatological Research, 304(8), 655-663.
    Kang, C. H., et al. (2013). beta-Ionone attenuates LPS-induced pro-inflammatory mediators such as NO, PGE2 and TNF-alpha in BV2 microglial cells via suppression of the NF-kappaB and MAPK pathway. Toxicol In Vitro, 27(2), 782-787.
    Kang, S., et al. (2005). Inflammation and Extracellular Matrix Degradation Mediated by Activated Transcription Factors Nuclear Factor-κB and Activator Protein-1 in Inflammatory Acne Lesions in Vivo. The American Journal of Pathology, 166(6), 1691-1699.
    Katzman, M., & Logan, A. C. (2007). Acne vulgaris: nutritional factors may be influencing psychological sequelae. Med Hypotheses, 69(5), 1080-1084.
    Khan, M. R., & Omoloso, A. D. (1998). Momordica charantia and Allium sativum: broadspectrum antibacterial activity. Kor. J. Pharmacogn., 29, 15-158.
    Khanna, P., & Mohan, S. (1973). Isolation and identification of diosgenin and sterols from fruits and in vitro cultures of Momordica charantia Linn. Journal of Experimental Biology, 11, 58-60.
    Kilkenny, M., Merlin, K., Plunkett, A., & Marks, R. (1998). The prevalence of common skin conditions in Australian school students: 3. acne vulgaris. Br J Dermatol, 139(5), 840-845.
    Kim, J., et al. (2002). Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol, 169(3), 1535-1541.
    Kobori, M., et al. (2008). Bitter gourd suppresses lipopolysaccharide-induced inflammatory responses. J Agric Food Chem, 56(11), 4004-4011.
    Koreck, A., Pivarcsi, A., Dobozy, A., & Kemeny, L. (2003). The role of innate immunity in the pathogenesis of acne. Dermatology, 206(2), 96-105.
    Kubola, J., & Siriamornpun, S. (2008). Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chemistry, 110(4), 881-890.
    Lii, C. K., Chen, H. W., Yun, W. T., & Liu, K. L. (2009). Suppressive effects of wild bitter gourd (Momordica charantia Linn. var. abbreviata ser.) fruit extracts on inflammatory responses in RAW264.7 macrophages. J Ethnopharmacol, 122(2), 227-233.
    Lim, T. K. (2012). Momordica charantia. Edible Medicinal And Non-Medicinal Plants, 2, 331-368.
    Liu, C. H., et al. (2010). Antioxidant triterpenoids from the stems of Momordica charantia. Food Chemistry 118, 751–756.
    Liu, J. Q., Chen, J. C., Wang, C. F., & Qiu, M. H. (2009). New cucurbitane triterpenoids and steroidal glycoside from Momordica charantia. Molecules, 14(12), 4804-4813.
    Lolitkar, M. M., & Rao, M. R. R. (1996). Pharmacology of a hypoglycaemic principle isolated from the fruits of Momordica charantia. Linn. Indian Journal of Pharmacy, 28, 129-133.
    Magin, P., Adams, J., Heading, G., Pond, D., & Smith, W. (2006). Psychological sequelae of acne vulgaris: results of a qualitative study. Can Fam Physician, 52, 978-979.
    Martin, H. (2010). Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components Mutation Research, 690, 57–63.
    Mathew, M., Mathew, S., Kumar, K. N. A., & Anandan, R. (2008). ANALGESIC AND ANTI-INFLAMMATORY ACTIVITIES OF LIVER OILS OF FOUR SHARK SPECIES FROM INDIAN EEZ. Journal of Food Lipids, 15(4), 470–487.
    McInturff, J. E., Modlin, R. L., & Kim, J. (2005). The role of toll-like receptors in the pathogenesis and treatment of dermatological disease. J Invest Dermatol, 125(1), 1-8.
    Melnik, B. C. (2012). Diet in acne: further evidence for the role of nutrient signalling in acne pathogenesis. Acta Derm Venereol, 92(3), 228-231.
    Moller, A. S., et al. (2005). Chemokine production and pattern recognition receptor (PRR) expression in whole blood stimulated with pathogen-associated molecular patterns (PAMPs). Cytokine, 32(6), 304-315.
    Moraes, L. A., Piqueras, L., & Bishop-Bailey, D. (2006). Peroxisome proliferator-activated receptors and inflammation. Pharmacology & Therapeutics, 110, 371 – 385.
    Moreau, R. A., Whitaker, B. D., & Hicks, K. B. (2002). Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Progress in Lipid Research, 41, 457–500.
    Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 65(1-2), 55-63.
    Mukaida, N., Harada, A., & Matsushima, K. (1998). Interleukin-8 (IL-8) and Monocyte Chemotactic and Activating Factor (MCAF/MCP-1), Chemokines Essentially Involved in Inflammatory and Immune Reactions. Cytokine & Growth Factor Reviews, 9(1), 9-23.
    Odontuya, G., Hoult, J. R., & Houghton, P. J. (2005). Structure-activity relationship for antiinflammatory effect of luteolin and its derived glycosides. Phytother Res, 19(9), 782-786.
    Paul, A., & Raychaudhuri, S. S. (2010). Medicinal Uses and Molecular Identification of Two Momordica charantia Varieties – a review. Electronic Journal of Biology, 6(2), 43-51.
    Pawin, H., et al. (2004). Physiopathology of acne vulgaris: recent data, new understanding of the treatments. Eur J Dermatol, 14(1), 4-12.
    Perry, A., & Lambert, P. (2011). Propionibacterium acnes: infection beyond the skin. Expert Rev Anti Infect Ther., 9(12), 1149-1156.
    Picardo, M., Ottaviani, M., Camera, E., & Mastrofrancesco, A. (2009). Sebaceous gland lipids. Dermato-Endocrinology, 1(2), 68-71.
    Pitchakarn, P., et al. (2010). Momordica charantia leaf extract suppresses rat prostate cancer progression in vitro and in vivo. Cancer Sci, 101(10), 2234-2240.
    Purdy, S., & de Berker, D. (2006). Acne. BMJ, 333(7575), 949-953.
    Reddy, L. H., & Couvreur, P. (2009). Squalene: A natural triterpene for use in disease management and therapy. Advanced Drug Delivery Reviews, 61, 1412–1426.
    Schmidt, A., et al. (1996). Identification of Fatty Acid Methyl Ester as Naturally Occurring Transcriptional Regulators of the Members of the Peroxisome Proliferator-Activated Receptor Family. Lipids 31, 1115-1124.
    Sharma, V., Singh, G., Kaur, H., Saxena, A. K., & Ishar, M. P. S. (2012). Synthesis of β-ionone derived chalcones as potent antimicrobial agents. Bioorganic & Medicinal Chemistry Letters, 22(20), 6343-6346.
    Shen, Y., et al. (2012). Prevalence of acne vulgaris in Chinese adolescents and adults: a community-based study of 17,345 subjects in six cities. Acta Derm Venereol, 92(1), 40-44.
    Shils, M. E., Shike, M., Ross, A. C., Caballero, B., & Cousins, R. J. (2006). Chapter 42 Cytokines and eicosanoids. Modern Nutrition in Health and Disease, 10th ed. (Lippincott Williams and Wilkins), 655-669.
    Singh, U., & Devaraj, S. (2007). Vitamin E: Inflammation and Atherosclerosis. Vitamins & Hormones, 76, 519–549.
    Singh, U. P., Maurya, S., Singh, A., & Singh, M. (2011). Phenolic acids in some indian cultivars of momordica charantia and their therapeutic properties. Journal of Medicinal Plants Research, 5(15), 3558-3560.
    Smith, R. N., Braue, A., Varigos, G. A., & Mann, N. J. (2008). The effect of a low glycemic load diet on acne vulgaris and the fatty acid composition of skin surface triglycerides. J Dermatol Sci, 50(1), 41-52.
    Smith, T. J. (2000). Squalene: potential chemopreventive agent. Exp. Opin. Invest. drugs, 9, 1841–1848.
    Srivastava, P., Jyotshna, Gupta, N., Maurya, A. K., & Shanker, K. (2013). New anti-inflammatory triterpene from the root of Ricinus communis. Natural Product Research, 1-6.
    Straus, D. S., & Glass, C. K. (2007). Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. TRENDS in Immunology, 28(12), 551-558.
    Taylor, M., Gonzalez, M., & Porter, R. (2011). Pathways to inflammation: acne pathophysiology. Eur J Dermatol, 21(3), 323-333.
    van Breemen, R. B., Tao, Y., & Li, W. (2011). Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale). Fitoterapia, 82(1), 38-43.
    Veith, W. B., & Silverberg, N. B. (2011). The association of acne vulgaris with diet. [Meta-Analysis Review]. Cutis, 88(2), 84-91.
    Whitman, S., Gezginci, M., Timmermann, B. N., & Holman, T. R. (2002). Structure-activity relationship studies of nordihydroguaiaretic acid inhibitors toward soybean, 12-human, and 15-human lipoxygenase. J Med Chem, 45(12), 2659-2661.
    Wu, W.-H., Lin, B.-Y., Kuo, Y.-H., & Huang, C.-j. (2009). Triglycerides constituted of short and medium chain fatty acids and dicarboxylic acids in Momordica charantia, as well as capric acid, inhibit PGE2 production in RAW264.7 macrophages. Food Chemistry 117(2), 306-311
    Xiang, Z., Tang, C., Chen, G., & Shi, Z. (2001). Studied on corlorimetric determination of oleanolic acid in Chinese quince Natural Product Research and Development, 13(4), 23-26
    Xiao, Y., et al. (2010). 18b-Glycyrrhetinic Acid Ameliorates Acute Propionibacterium acnes-induced Liver Injury through Inhibition of Macrophage Inflammatory Protein-1a. THE JOURNAL OF BIOLOGICAL CHEMISTR, 285(2), 1128-1137.
    Xu, S. X., et al. (2007). The familial risk of acne vulgaris in Chinese Hans - a case-control study. J Eur Acad Dermatol Venereol, 21(5), 602-605.
    Yang, X., et al. (2011). Antioxidant activity and cell protective effect of loliolide isolated from Sargassum ringgoldianum subsp. coreanum. Algae, 26(2), 201-208
    Zhang, J., et al. (2012). Cucurbitane Triterpenoids from the Leaves of Momordica charantia, and Their Cancer Chemopreventive Effects and Cytotoxicities. Chemistry & Biodiversity, 9(2), 428-440.
    Zhang, M., Hettiarachchy, N. S., Horax, R., Chen, P., & Over, K. F. (2009). Effect of Maturity Stages and Drying Methods on the Retention of Selected Nutrients and Phytochemicals in Bitter Melon (Momordica charantia) Leaf. Journal of Food Science, 74(6), C441-C448.

    下載圖示
    QR CODE