研究生: |
張家勳 Chang, Chia-Hsun |
---|---|
論文名稱: |
二維SSH模型的拓樸性質與分類 The Topology and Classification of the 2D-SSH Model |
指導教授: |
高賢忠
Kao, Hsien-Chung |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 58 |
中文關鍵詞: | SSH 模型 、Extended SSH 模型 、塊材與邊界對應性 、半金屬 、弱拓樸絕緣體 、時間反演對稱性 、奈米碳管 |
英文關鍵詞: | SSH model, Extended SSH model, Bulk-edge correspondence, Semimetal, Weak topological insulator, Time reversal symmetry, Graphene nanotube |
DOI URL: | http://doi.org/10.6345/NTNU202001144 |
論文種類: | 學術論文 |
相關次數: | 點閱:217 下載:14 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當塊材具有拓樸性質時,其對應的邊界上會存在邊界態,這就是所謂的「塊材與邊 界對應性」。此對應可由簡單的一維模型 − SSH 模型或 extended SSH 模型來做驗證。 我們嘗試將一維 SSH 長鏈交錯編織以推廣成二維系統,並稱之為二維 SSH 模型。
我們發現透過調整二維 SSH 模型的參數,系統有可能為半金屬,弱拓樸絕緣體或 是一般的絕緣體。由於二維 SSH 模型具有時間反演對稱性,我們利用這個特性定義出 一個強拓樸量與兩個弱拓樸量,並用它們來為系統做分類。此外,我們也發現這個分 類方法等價於一個圖像化的分類方式。利用數值方法,我們驗證了二維 SSH 模型的塊 材與邊界對應性。最後,當選取特定的參數與邊界條件時,可以得出不同邊界型態的 奈米碳管的結果。
When a system carries non-vanishing topological numbers in the bulk, there will be edge states on the boundary. This is the so-called bulk-edge correspondence. It can be verified explicitly by using the 1D SSH or extended SSH models. In this thesis, we consider the 2D-SSH model which may be constructed by interweaving the 1D SSH chains into a two dimensional system.
For the 2D-SSH model, we find that it can be a semimetal, weak topological insulator or trivial insulator depending on the values of the parameters. Because the 2D-SSH model has time reversal symmetry, we may use this to define a strong topological number and two weak topological numbers. We can classify the system by using these topological numbers. Furthermore, we also show that this is equivalent to a graphical way to classify the system. We use numerical calculation to verify the bulk-edge correspondence for the 2D-SSH model. Finally, we can reproduce the results of various carbon nanotubes by choosing specific parameters and boundary conditions.
[1] W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in polyacetylene,” Phys. Rev. Lett., vol. 42, pp. 1698–1701, Jun 1979.
[2] J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course on Topological Insulators. Springer International Publishing, 2016.
[3] H.-T. Chen, C.-H. Chang, and H. chung Kao, “The zak phase and winding number,” 2019.
[4] B.-H. Chen and D.-W. Chiou, “A rigorous proof of bulk-boundary correspondence in the generalized su-schrieffer-heeger model,” 2017.
[5] 陳漢庭, “札克相位與繞圈數”, 碩士論文, 國立臺灣大學物理學研究所, 2019.
[6] X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys., vol. 83, pp. 1057–1110, Oct 2011.
[7] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, “Classification of topological quantum matter with symmetries,” Rev. Mod. Phys., vol. 88, p. 035005, Aug 2016.
[8] 陳柏宏, “Two-dimensional extended su-schrieffer-heeger model”, 碩士論文, 國立臺灣師範大學物理學系, 2018.
[9] A. Kitaev, “Periodic table for topological insulators and superconductors,” AIP Conference Proceedings, vol. 1134, no. 1, pp. 22–30, 2009.
[10] L. Fu, C. L. Kane, and E. J. Mele, “Topological insulators in three dimensions,” Phys. Rev.Lett., vol. 98, p. 106803, Mar 2007.
[11] B. A. BERNEVIG and T. L. Hughes, Topological Insulators and Topological Superconductors. Princeton University Press, 2013.
[12] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B, vol. 83, p. 205101, May 2011.
[13] N. Hamada, S.-i. Sawada, and A. Oshiyama, “New one-dimensional conductors: Graphitic microtubules,” Phys. Rev. Lett., vol. 68, pp. 1579–1581, Mar 1992.
[14] P. Delplace, D. Ullmo, and G. Montambaux, “Zak phase and the existence of edge states in graphene,” Phys. Rev. B, vol. 84, p. 195452, Nov 2011.
[15] K. Wakabayashi, K.-i. Sasaki, T. Nakanishi, and T. Enoki, “Topical review electronic states of graphene nanoribbons and analytical solutions,” Science and Technology of Advanced Materials - SCI TECHNOL ADV MATER, vol. 11, 10 2010.
[16] L. Wang, R.-Y. Zhang, M. Xiao, D. Han, C. T. Chan, and W. Wen, “The existence of topological edge states in honeycomb plasmonic lattices,” New Journal of Physics, vol. 18, p. 103029, oct 2016.
[17] K.-S. Lin and M.-Y. Chou, “Topological properties of gapped graphene nanoribbons with spatial symmetries,” 2018.
[18] X.-L. Qi, Y.-S. Wu, and S.-C. Zhang, “Topological quantization of the spin hall effect in two-dimensional paramagnetic semiconductors,” Phys. Rev. B, vol. 74, p. 085308, Aug 2006.
[19] T.-R. Chang, S.-Y. Xu, D. S. Sanchez, W.-F. Tsai, S.-M. Huang, G. Chang, C.-H. Hsu, G. Bian, I. Belopolski, Z.-M. Yu, S. A. Yang, T. Neupert, H.-T. Jeng, H. Lin, and
M. Z. Hasan, “Type-ii symmetry-protected topological dirac semimetals,” Phys. Rev. Lett., vol. 119, p. 026404, Jul 2017.
[20] J. He, X. Kong, W. Wang, and S.-P. Kou, “Type ii nodal line semimetal,” 2017.
[21] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett., vol. 108, p. 140405, Apr 2012.
[22] H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai, and Y. Kawazoe, “Topological node-line semimetal in three-dimensional graphene networks,” Phys. Rev. B, vol. 92, p. 045108, Jul 2015.
[23] J.-T. Wang, S. Nie, H. Weng, Y. Kawazoe, and C. Chen, “Topological nodal-net semimetal in a graphene network structure,” Phys. Rev. Lett., vol. 120, p. 026402, Jan 2018.
[24] L. Fu, “Topological crystalline insulators,” Phys. Rev. Lett., vol. 106, p. 106802, Mar 2011.
[25] C.-K. Chiu and A. P. Schnyder, “Classification of reflection-symmetry-protected topological semimetals and nodal superconductors,” Phys. Rev. B, vol. 90, p. 205136, Nov 2014.
[26] L. Fu and C. L. Kane, “Topological insulators with inversion symmetry,” Phys. Rev. B, vol. 76, p. 045302, Jul 2007.