簡易檢索 / 詳目顯示

研究生: 陳冠廷
CHEN, GUAN-TING
論文名稱: 設計並製作高效率圓極化熱輻射發射器以及黃光微影製程二次曝光對準測試
Design and Fabrication of High-Efficiency Circularly Polarized Thermal Radiation Emitters and Photolithography Process Secondary Exposure Alignment Test
指導教授: 蕭惠心
Hsiao, Hui-Hsin
廖書賢
Liao, Shu-Hsien
口試委員: 王智明
Wang, Chih-Ming
王培勳
Wang, Pei-Hsun
蕭惠心
Hsiao, Hui-Hsin
廖書賢
Liao, Shu-Hsien
口試日期: 2023/11/09
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 84
中文關鍵詞: 侷域型表面電漿子共振圓極化熱輻射發射器超穎介面微影製程二次對準
英文關鍵詞: Localized surface plasmons, circularly polarized thermal radiation, metasurface, photolithography, secondary alignment
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301817
論文種類: 學術論文
相關次數: 點閱:92下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發在中紅外波段具圓極化之熱輻射發射器,基於金屬/介電質/金屬(metal-insulator-metal, MIM)之三明治結構,藉由優化頂層金的幾何結構與旋轉角度來達到四階相位排列。首先,利用模擬軟體設計在不同的二氧化矽的厚度下,改變上層金屬結構分別為長方形與V字型的幾何形狀,去分析兩種結構的反射頻譜以及相位響應,找到了在200 nm二氧化矽厚度下,長方形與V字型的反射率達0.5、兩者相位差為93度的結構來組成具四階相位響應的圓極化熱輻射發射器設計。接著使用黃光製程來完成樣品的製作,並利用傅里葉轉換紅外光譜儀量測比對實驗與模擬結果是否吻合。根據廣義斯乃爾定律,出射光的角度取決於結構的空間相位梯度分布,因此我們進一步量測比較樣品在不同角度下的發射強度,判斷其發射是否符合理論設計。發現由於製程上的誤差,製作出的V字型樣品其斜邊長度會使得反射值增加到0.9,相位值提升至240,因此需提升製作樣品的精細度。我們接著開發黃光微影二次曝光的技術,測試的結構為光柵圖案,藉由不同的間距進行測試,測試的實際間距為100 nm到800 nm左右,針對光罩設計和基板進行改善,以及在對準時改進位移平台和旋鈕的問題,最後也進行了第二次曝光的秒數測試,實驗後發現間距最小可以達到800 nm左右,也讓光柵的解析度可以更好。未來也可以對不同的結構去進行二次對準的實驗,讓設計的結構可以複雜化,結構設計的限制也可以更小。

    The thesis aims to develop a mid-infrared circularly polarized thermal emitter based on the designs of a metal-insulator-metal (MIM) structure. We first optimize the geometry of the top-layered gold micro-structures and rotate them to achieve a four-level metasurface. First, the simulation software is utilized to design the top-layered gold structures including rectangular- and V-shaped structures and analyzed the reflection and phase responses of these structures under different oxide layer (SiO2) thicknesses. Then, we designed a four-level circularly-polarized thermal emitter using optimized rectangular- and V-shaped structures with reflection of 0.5 and a phase difference of 93o between then under an oxide thickness of 200 nm. Next, we fabricate samples using photolithography and measure spectra with Fourier-transform infrared spectroscopy. We compare the results with simulations. Based on generalized Snell's law, emission angles rely on the metasurface's phase distribution. We measure sample emission at different angles to check if it deflects as intended. However, deviations between fabricated samples and the designed structures exist, We observed that a shorter inclined side of the V-shaped structure we produced resulted in increased reflectance to 0.9 and a phase value of 240. Therefore, we require enhanced precision in sample fabrication. To address this, secondary exposure in photolithography are conducted using a grating pattern structure with varying gap sizes ranging from approximately 100 nm to 800 nm. We try to improve the designs of photomask and substrate conditions, along with the adjustment in the alignment platform and rotation knob during alignment. The results indicate that the minimum gap size can reach around 800 nm, leading to improved grating resolution.

    目錄 致謝 I 中文摘要 II 英文摘要 III 第一章 緒論1 1-1中紅外熱輻射器 1 1-2黑體輻射 2 1-3克希荷夫熱輻射定律 3 1-4多波長窄頻熱輻射發射器 4 1-4-1 侷域型表面電漿子現象4 1-5圓極化熱輻射發射器 6 1-6廣義的司乃爾定律 10 1-6-1多共振超穎介面 10 1-6-2間隙電漿共振超穎介面 11 1-6-3 Pancharatnam-Berry相位超穎介面 11 1-7微影技術的發展趨勢 13 1-7-1解析度以及景深 13 1-7-2二次、三次、多次圖案化技術 15 1-8論文概述 17 第二章 數值計算原理與實驗架構19 2-1有限元素法 19 2-2實驗儀器介紹 20 2-2-1電子束蒸鍍真空系統(Electron Beam Evaporator) 20 2-2-2黃光製程設備 23 2-3量測系統 25 2-3-1反射量測頻譜 25 2-3-2熱輻射頻譜量測 26 2-4實驗流程 27 2-4-1基板清潔 27 2-4-2底層金屬以及介電層薄膜 28 2-4-3黃光微影製程 28 2-4-4頂層金屬沈積 30 2-4-5掀離製程(Lift-off) 30 2-4-6樣品製造流程示意圖 30 第三章 圓極化熱輻射發射器 32 3-1 圓極化熱輻射發射器相位理論假設 32 3-2 熱輻射相位模擬設計 34 3-3 週期為5 μm時,改變結構介電層厚度之相位響應 36 3-4 對於結構的圓角化模擬測試 40 3-5實驗過程與討論 44 3-5-1 結構設計主要參數 44 3-5-2圓極化熱輻射發射器反射頻譜 46 3-5-3圓極化熱輻射發射器發射頻譜 53 3-5-4圓極化熱輻射發射器偏折角度量測 54 3-6結論 61 第四章 黃光製程 - 二次對準 62 4-1 設計光罩 : 針對二次對準設計出光罩,並且光罩的設計隨著機台限制去改變。 62 4-2 增加光罩記號 : 在結構前面加上小正方形以及菱形記號,以便在曝光時透過螢幕可以利用小記號方便跟結構進行對準。 64 4-3 進行二次曝光的測試 67 4-3-1二次曝光實驗流程 67 4-3-2第一次二次對準結果 68 4-3-3第二次測試,改良基板高度凹凸不平,使用已經事先裁切好的基板 70 4-3-4第三次測試,調整旋鈕幅度以便對準記號 72 4-3-5測試第二次曝光秒數對於線寬的影響 74 4-3-6第四次二次對準結果 76 第五章 結論 79

    B. Guo, Y. Wang, Y. Wang, and H. Q. Le, "Mid-infrared laser measurements of aqueous glucose," Journal of Biomedical Optics, vol. 12, no. 2, pp. 024005-024005-14, 2007.
    I. T. Sorokina and K. L. Vodopyanov, Solid-state mid-infrared laser sources. Springer Science & Business Media, 2003.
    I. Celanovic, D. Perreault, and J. Kassakian, "Resonant-cavity enhanced thermal emission," Physical Review B, vol. 72, no. 7, p. 075127, 2005.
    D. L. Chan, I. Celanovic, J. Joannopoulos, and M. Soljačić, "Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances," Physical Review A, vol. 74, no. 6, p. 064901, 2006.
    D. L. Chan, M. Soljačić, and J. Joannopoulos, "Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs," Physical Review E, vol. 74, no. 1, p. 016609, 2006.
    B. J. Lee, Y.-B. Chen, and Z. Zhang, "Surface waves between metallic films and truncated photonic crystals observed with reflectance spectroscopy," Optics letters, vol. 33, no. 3, pp. 204-206, 2008.
    B. J. Lee and Z. Zhang, "Design and fabrication of planar multilayer structures with coherent thermal emission characteristics," Journal of Applied Physics, vol. 100, no. 6, 2006.
    T. Ming-Wei, J. Yu-Wei, C. Chia-Yi, Y. Yi-Han, and L. Si-Chen, "Cavity mode in trilayer Ag/SiO_2/Au plasmonic thermal emitter," in Extended abstracts of the... Conference on Solid State Devices and Materials, 2007, vol. 2007, pp. 762-763.
    M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," Applied physics letters, vol. 89, no. 17, 2006.
    C.-M. Wang et al., "Reflection and emission properties of an infrared emitter," Optics Express, vol. 15, no. 22, pp. 14673-14678, 2007.
    Y.-H. Ye et al., "Localized surface plasmon polaritons in Ag∕ SiO2∕ Ag plasmonic thermal emitter," Applied Physics Letters, vol. 93, no. 3, 2008.
    K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nature communications, vol. 2, no. 1, p. 517, 2011.
    D. L. Chan, M. Soljačić, and J. Joannopoulos, "Thermal emission and design in 2D-periodic metallic photonic crystal slabs," Optics express, vol. 14, no. 19, pp. 8785-8796, 2006.
    J. S. Chou and S. C. Lee, "Effect of porosity on infrared‐absorption spectra of silicon dioxide," Journal of applied physics, vol. 77, no. 4, pp. 1805-1807, 1995.
    T.-H. Chuang, M.-W. Tsai, Y.-T. Chang, and S.-C. Lee, "Remotely coupled surface plasmons in a two-colored plasmonic thermal emitter," Applied physics letters, vol. 89, no. 17, 2006.
    D. Costantini et al., "Plasmonic metasurface for directional and frequency-selective thermal emission," Physical Review Applied, vol. 4, no. 1, p. 014023, 2015.
    T. D. Dao et al., "Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers," Acs Photonics, vol. 2, no. 7, pp. 964-970, 2015.
    S.-Y. Huang et al., "Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer," IEEE Photonics Technology Letters, vol. 24, no. 10, pp. 833-835, 2012.
    T. Inoue, M. De Zoysa, T. Asano, and S. Noda, "On-chip integration and high-speed switching of multi-wavelength narrowband thermal emitters," Applied Physics Letters, vol. 108, no. 9, 2016.
    B. Liu, W. Gong, B. Yu, P. Li, and S. Shen, "Perfect thermal emission by nanoscale transmission line resonators," Nano letters, vol. 17, no. 2, pp. 666-672, 2017.
    J. Liu et al., "Quasi-coherent thermal emitter based on refractory plasmonic materials," Optical Materials Express, vol. 5, no. 12, pp. 2721-2728, 2015.
    X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, "Taming the blackbody with infrared metamaterials as selective thermal emitters," Physical review letters, vol. 107, no. 4, p. 045901, 2011.
    A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, "On-chip narrowband thermal emitter for mid-IR optical gas sensing," ACS photonics, vol. 4, no. 6, pp. 1371-1380, 2017.
    K. Masuno, T. Sawada, S. Kumagai, and M. Sasaki, "Multiwavelength selective IR emission using surface plasmon polaritons for gas sensing," IEEE Photonics Technology Letters, vol. 23, no. 22, pp. 1661-1663, 2011.
    H. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, "Dual-band infrared metasurface thermal emitter for CO2 sensing," Applied Physics Letters, vol. 105, no. 12, 2014.
    E. Sakat, L. Wojszvzyk, J.-P. Hugonin, M. Besbes, C. Sauvan, and J.-J. Greffet, "Enhancing thermal radiation with nanoantennas to create infrared sources with high modulation rates," Optica, vol. 5, no. 2, pp. 175-179, 2018.
    R. Smaali, F. Omeis, E. Centeno, T. Taliercio, F. Gonzalez-Posada, and L. Cerutti, "Giant Rabi splitting at the phonon line within all-semiconductor metallic-insulator-metallic antennas," Physical Review B, vol. 100, no. 4, p. 041302, 2019.
    M.-R. Tang, H.-H. Hsiao, C.-H. Hong, W.-L. Huang, and S.-C. Lee, "An uncooled LWIR-detector with LSPR enhancement and selective narrow absorption," IEEE Photonics Technology Letters, vol. 30, no. 13, pp. 1206-1209, 2018.
    S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, "Plasmonic thermal IR emitters based on nanoamorphous carbon," Applied physics letters, vol. 94, no. 7, 2009.
    Z. Wang, J. K. Clark, L.-C. Huang, Y.-L. Ho, and J.-J. Delaunay, "Plasmonic nanochannel structure for narrow-band selective thermal emitter," Applied Physics Letters, vol. 110, no. 25, 2017.
    X. Zhang, H. Liu, Z. Zhang, Q. Wang, and S. Zhu, "Controlling thermal emission of phonon by magnetic metasurfaces," Scientific Reports, vol. 7, no. 1, p. 41858, 2017.
    M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, "Surface plasmon mediated interference phenomena in low-Q silver nanowire cavities," Nano Letters, vol. 8, no. 1, pp. 31-35, 2008.
    J. Burke, G. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Physical Review B, vol. 33, no. 8, p. 5186, 1986.
    J. Dorfmüller et al., "Fabry-Pérot resonances in one-dimensional plasmonic nanostructures," Nano letters, vol. 9, no. 6, pp. 2372-2377, 2009.
    T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," nature, vol. 391, no. 6668, pp. 667-669, 1998.
    E. Economou, "Surface plasmons in thin films," Physical review, vol. 182, no. 2, p. 539, 1969.
    H. Ghaemi, T. Thio, D. e. a. Grupp, T. W. Ebbesen, and H. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Physical review B, vol. 58, no. 11, p. 6779, 1998.
    A. J. Haes and R. P. Van Duyne, "A unified view of propagating and localized surface plasmon resonance biosensors," Analytical and bioanalytical chemistry, vol. 379, pp. 920-930, 2004.
    C. L. Haynes and R. P. Van Duyne, "Plasmon-sampled surface-enhanced Raman excitation spectroscopy," The Journal of Physical Chemistry B, vol. 107, no. 30, pp. 7426-7433, 2003.
    H. Liao, C. L. Nehl, and J. H. Hafner, "Biomedical applications of plasmon resonant metal nanoparticles," 2006.
    H. T. Miyazaki and Y. Kurokawa, "Controlled plasmon resonance in closed metal/insulator/metal nanocavities," Applied physics letters, vol. 89, no. 21, 2006.
    K. V. Nerkararyan, "Superfocusing of a surface polariton in a wedge-like structure," Physics Letters A, vol. 237, no. 1-2, pp. 103-105, 1997.
    F. Neubrech et al., "Resonances of individual metal nanowires in the infrared," Applied Physics Letters, vol. 89, no. 25, 2006.
    M. Noginov, G. Zhu, V. Drachev, and V. Shalaev, "Surface plasmons and gain media," in Nanophotonics with Surface Plasmons: Elsevier, 2007, pp. 141-169.
    G. T. Sincerbox and J. C. Gordon, "Small fast large-aperture light modulator using attenuated total reflection," Applied optics, vol. 20, no. 8, pp. 1491-1496, 1981.
    O. Solgaard, F. Ho, J. Thackara, and D. Bloom, "High frequency attenuated total internal reflection light modulator," Applied physics letters, vol. 61, no. 21, pp. 2500-2502, 1992.
    E. Verhagen, A. Polman, and L. K. Kuipers, "Nanofocusing in laterally tapered plasmonic waveguides," Optics express, vol. 16, no. 1, pp. 45-57, 2008.
    H.-H. Chen, H.-H. Hsiao, H.-C. Chang, W.-L. Huang, and S.-C. Lee, "Double wavelength infrared emission by localized surface plasmonic thermal emitter," Applied Physics Letters, vol. 104, no. 8, 2014.
    S. L. Wadsworth, P. G. Clem, E. D. Branson, and G. D. Boreman, "Broadband circularly-polarized infrared emission from multilayer metamaterials," optical materials express, vol. 1, no. 3, pp. 466-479, 2011.
    K. Müller, F. Fuchs, and F. Kneubühl, "Partial circular polarization of the spectral thermal emission from ferromagnetic iron," Physics Letters A, vol. 64, no. 2, pp. 249-250, 1977.
    M. Song, H. Yu, J. Luo, and Z. Zhang, "Tailoring infrared refractory plasmonic material to broadband circularly polarized thermal emitter," Plasmonics, vol. 12, pp. 649-654, 2017.
    S. Dyakov, A. Ignatov, S. Tikhodeev, and N. Gippius, "Circularly polarized thermal emission from chiral metasurface in the absence of magnetic field," in Journal of Physics: Conference Series, 2018, vol. 1092, no. 1: IOP Publishing, p. 012028.
    N. Yu et al., "Light propagation with phase discontinuities: generalized laws of reflection and refraction," science, vol. 334, no. 6054, pp. 333-337, 2011.
    S. Sun et al., "High-efficiency broadband anomalous reflection by gradient meta-surfaces," Nano letters, vol. 12, no. 12, pp. 6223-6229, 2012.
    H. H. Hsiao, C. H. Chu, and D. P. Tsai, "Fundamentals and applications of metasurfaces," Small Methods, vol. 1, no. 4, p. 1600064, 2017.
    D. Wen et al., "Metasurface for characterization of the polarization state of light," Optics express, vol. 23, no. 8, pp. 10272-10281, 2015.
    M. D. Levenson, N. Viswanathan, and R. A. Simpson, "Improving resolution in photolithography with a phase-shifting mask," IEEE Transactions on electron devices, vol. 29, no. 12, pp. 1828-1836, 1982.
    T. Jenkins, F. Phail, and S. Sackman, "Semiconductor competitiveness in the 1990s," SAE transactions, pp. 991-997, 1990.
    T. Chang, D. Kern, and L. Muray, "Arrayed miniature electron beam columns for high throughput sub‐100 nm lithography," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 10, no. 6, pp. 2743-2748, 1992.
    P. Van Zant, "Microchip processing," ed: McGraw-Hill: New York, 1997.
    J. Liddle, L. R. Harriott, A. Novembre, and W. Waskiewicz, "SCALPEL: A projection electron-beam approach to sub-optical lithography," Technology Review of Bell Labs, 1999.
    J. A. McClay and A. S. McIntyre, "157nm optical lithography: The accomplishments and the challenges," Solid State Technology, vol. 42, no. 6, pp. 57-64, 1999.
    D. A. Kinkead, A. Grayfer, and O. P. Kishkovich, "Prevention of optics and resist contamination in 300-mm lithography: improvements in chemical air filtration," in Metrology, Inspection, and Process Control for Microlithography XV, 2001, vol. 4344: SPIE, pp. 739-752.
    B. J. Lin, "The k3 coefficient in nonparaxial λ/NA scaling equations for resolution, depth of focus, and immersion lithography," Journal of Micro/Nanolithography, MEMS and MOEMS, vol. 1, no. 1, pp. 7-12, 2002.
    B. Dinu et al., "Overlay control using scatterometry based metrology (SCOM) in production environment," in Metrology, Inspection, and Process Control for Microlithography XXII, 2008, vol. 6922: SPIE, pp. 957-965.
    K. Lai et al., "Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22nm logic lithography process," in Optical Microlithography XXII, 2009, vol. 7274: SPIE, pp. 82-93.
    八講学, "背景散乱光を用いた回折光学素子の形状推定," 2014.

    無法下載圖示 本全文未授權公開
    QR CODE