簡易檢索 / 詳目顯示

研究生: 陳鈞霖
Chen, Chun-Lin
論文名稱: 毫米波之寬頻可變增益放大器與功率放大器設計
Design of Broadband Millimeter-Wave Variable Gain Amplifier and Power Amplifier
指導教授: 蔡政翰
Tsai, Jeng-Han
口試委員: 楊弘源
Yang, Hong-Yuan
李威璁
Li, Wei-Tsung
蔡政翰
Tsai, Jeng-Han
口試日期: 2023/06/16
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 119
中文關鍵詞: 可變增益放大器電流控制架構基極偏壓功率放大器F類放大器共振腔相位反轉變壓器二級串接
英文關鍵詞: Variable Gain Amplifier, Current Steering, Body Bias, Power Amplifier, Class-F, Complementary Metal Oxide Semiconductor, LC resonant, phase compensation, transformer, two-stage cascode
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301291
論文種類: 學術論文
相關次數: 點閱:155下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球進入5G通訊的時代,毫米波的研究和發展越來越重要。其中毫米波所擁有的優勢為高速傳輸速率、較寬的頻寬和較低的延遲,因此,毫米波的運用變成眾人的發展目標。本論文將分別使用90-nm互補式金屬氧化物半導體製程和65-nm互補式金屬氧化物半導體製程,來實現主頻為28 GHz的寬頻增益放大器與寬頻功率放大器。
    第一個電路為28 GHz寬頻增益放大器,使用兩極皆為疊接組態增加整體的增益,同時使用第一級電流控制架構和基極偏壓技術,來達成較寬高的可變增益範圍,在可變增益範圍維持的前提下,使用共振腔及相位反轉技術達到低相位差。在這顆電路中,實現27 GHz~40 GHz的頻寬,增益皆大於16 dB,可變增益範圍皆可達到6.7,而相位差則低於5度。
    第二個電路為28 GHz寬頻功率放大器,利用兩級串接的方法增加電路的增益,同時利用變壓器來當作匹配網路和功率結合的元件,第二級放大器採用F類來提高效率。當操作頻率為28GHz時,功率增益(Power gain)為25.588 dB,飽和輸出功率(Psat)為16.558 dBm,最大功率附加效率Peak PAE約為44.821 %,1-dB增益壓縮點之輸出功率(OP1dB)約為12.941 dBm,整體靜態電流約為15.64 mA,功率消耗為18.768 mW。

    As the world enters the 5G communication, the research and development of millimeter-wave technologies have become increasingly important. A millimeter-wave band offers advantages such as high data-rate, wider bandwidth, and lower latency, making it a prominent focus of development. In this paper, we use 90-nm and 65-nm CMOS process to design two amplifiers centered at the frequency of 28-GHz, They are a broadband variable gain amplifier and broadband power amplifier.
    The first circuit is a 28-GHz broadband variable gain amplifier. In this circuit, we designed with a cascode topology in both stages to increase gain. The current streeing is added in first satge and used body bias to achieve a wide variable gain range. Additionally, LC resonant and phase inversion are utilized to minimize phase variation while maintaining the variable gain range. The circuit achieve a bandwidth from 27-GHz to 40-GHz, with the gain of more than 16 dB, and a variable gain range greater than 6.7. Finally, the phase difference is below 5 degrees.
    The second circuit is a 28-GHz broadband power amplifier. We designed with two-stage to increase the gain in this circuit. The transformer plays a role in matching network and power combining. The second-stage is class-F amplifier to improve efficiency. When operating at 28GHz, the power gain is 25.588 dB, the saturated output power is 16.558 dBm, the peak PAE is 44.821%, and the output power at 1-dB gain compression point is 12.941 dBm. The current is 15.64 mA, and the power consumption is 18.768 mW.

    誌 謝 i 摘 要 ii ABSTRACT iii 目錄 v 表 目 錄 viii 圖 目 錄 ix 第一章 緒論 1 1.1 背景與動機 1 1.2 文獻探討 2 1.2.1 寬頻可變增益放大器 2 1.2.2 寬頻功率放大器 3 1.3 研究成果 4 1.4 論文架構 5 第二章 寬頻可變增益放大器設計 6 2.1 簡介 6 2.2 寬頻可變增益放大器之架構 7 2.2.1 Current Steering架構 9 2.2.2 數位控制 9 2.2.3 相位補償技術 10 2.2.4 基極偏壓(Body Bias)技術 13 2.3 寬頻可變增益放大器之設計參數 14 2.3.1 散射參數(S-parameters) 14 2.3.2 可變增益範圍(Gain Control Range,GCR) 16 2.3.3 相位誤差(Phase Error) 16 2.3.4 均方根相位差(RMS Phase Error) 16 2.3.5 均方根振幅誤差(RMS Amplitude Error) 17 2.3.6 雜訊指數(Noise Figure, NF) 17 2.4 寬頻可變增益放大器設計 18 2.4.1 主電路電晶體偏壓分析與選擇 18 2.4.2 主電路電晶體尺寸分析與選擇 20 2.4.3 Current Steering電晶體尺寸設計與偏壓選擇 25 2.4.4 基極偏壓技術使用 27 2.4.5 匹配網路設計 28 2.4.6 旁路電容設計 30 2.5 寬頻可變增益放大器之模擬結果 32 2.6 寬頻可變增益放大器之量測結果 43 2.7 結果與討論 52 2.8 總結 55 第三章 寬頻功率放大器設計 57 3.1 簡介 57 3.2 功率放大器種類 58 3.2.1 傳統放大器種類 58 3.2.2 Class-F放大器 59 3.3 功率放大器之架構 62 3.3.1 Neutralization 技術 62 3.4 功率放大器設計參數 63 3.4.1 功率(Power) 63 3.4.2 效率(Efficiency) 64 3.4.3 線性度(Linearity) 65 3.5 寬頻功率放大器設計 68 3.5.1 預計規格 68 3.5.2 寬頻功率放大器之電路架構 68 3.5.3 電晶體偏壓分析與選擇 69 3.5.4 Power stage電晶體尺寸分析與選擇 71 3.5.5 Power stage電晶體數量的選擇與Load-Pull模擬 73 3.5.6 Power stage輸出端阻抗選擇與匹配設計 74 3.5.7 Driver stage電晶體尺寸分析與選擇 81 3.5.8 輸入端與級間匹配 83 3.6 寬頻功率放大器模擬結果 90 3.7 結果與討論 99 3.8 總結 111 第四章 結論 112 參 考 文 獻 113 自  傳 118 學 術 成 就 119

    [1] C. W. Byeon, I. S. Song, S. J. Cho, H. Y. Kim, C. Lee and C. S. Park, "A 60 GHz Variable Gain Amplifier with a Low Phase Imbalance in 0.18 μm SiGe BiCMOS Technology," 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Oct 2012.
    [2] K. -Y. Kao, D. -R. Lu, J. -C. Kao and K. -Y. Lin, "A 60 GHz variable-gain low-noise amplifier with low phase variation," 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2016, pp. 1-3.
    [3] Z. Jiang et al., "A 33.5–39 GHz 5-bit variable gain LNA with 4 dB NF and low phase shift," 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpar, 2017, pp. 1200-1202.
    [4] P. Lo, C. Lin, H. Kuo and H. Chuang, "A Ka-band CMOS low-phase-variation variable gain amplifier with good matching capacity," 2012 9th European Radar Conference, Amsterdam, 2012, pp. 532-535.
    [5] W. Li, Y. Chiang, J. Tsai, H. Yang, J. Cheng and T. Huang, "60-GHz 5-bit Phase Shifter With Integrated VGA Phase-Error Compensation," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no.3, pp.1224-1235, March 2013
    [6] Y. -K. Hsieh, J. -L. Kuo, H. Wang and L. -H. Lu, "A 60 GHz Broadband Low-Noise Amplifier With Variable-Gain Control in 65 nm CMOS," in IEEE Microwave and Wireless Components Letters, vol. 21, no. 11, pp. 610-612.
    [7] B. Min and G. M. Rebeiz, "Ka-Band SiGe HBT Low Phase Imbalance Differential 3-Bit Variable Gain LNA," in IEEE Microwave and Wireless Components Letters, vol. 18, no. 4, pp. 272-274, April 2008
    [8] K. Kao, D. Lu, J. Kao and K. Lin, "A 60 GHz variable-gain low-noise amplifier with low phase variation," 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, 2016, pp. 1-3.
    [9] J.-H. Tsai and C.-L. Lin, “A 40 GHz 4-Bit digitally controlled VGA with low phase variation using 65 nm CMOS process,” IEEE Microwave and Wireless Components Letters, vol. 29, no. 11, pp. 729-732, Nov. 2019.
    [10] F. Ellinger, U. Jorges, U. Mayer and R. Eickhoff, "Analysis and Compensation of Phase Variations Versus Gain in Amplifiers Verified by SiGe HBT Cascode RFIC," in IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 8, pp. 1885-1894, Aug. 2009.
    [11] H. -Y. Chang, S. -H. Weng and C. -C. Chiong, "A 30–50 GHz Wide Modulation Bandwidth Bidirectional BPSK Demodulator/ Modulator With Low LO Power," in IEEE Microwave and Wireless Components Letters, vol. 19, no. 5, pp. 332-334, May 2009.
    [12] M. Elkholy, S. Shakib, J. Dunworth, V. Aparin and K. Entesari, "A Wideband Variable Gain LNA With High OIP3 for 5G Using 40-nm Bulk CMOS," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 1, pp. 64-66, Jan. 2018.
    [13] Z. Tsai, J. Kao, K. Lin and H. Wang, "A compact low DC consumption 24-GHz Cascode HEMT VGA," 2009 Asia Pacific Microwave Conference, Singapore, 2009, pp. 1625-1627.
    [14] Y. Yi, D. Zhao, and X. You, A. Valdes-Garcia, “A Ka-band CMOS digital-controlled phase-invariant variable gain amplifier with 4-bit tuning range and 0.5-dB resolution,” 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 152-155, 2018.
    [15] B. Sadhu, J. F. Bulzacchelli, A. Valdes-Garcia, “A 28GHz SiGe BiCMOS phase invariant VGA,” 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 150-153, 2016.
    [16] P. -H. Lo, C. -C. Lin, H. -C. Kuo and H. -R. Chuang, "A Ka-band CMOS low-phase-variation variable gain amplifier with good matching capacity," 2012 42nd European Microwave Conference, 2012, pp. 858-861.
    [17] C.-Y. Hsieh, J.-C. Kao, J.-J. Kuo, K.-Y. Lin, “A 57-64 GHz low-phase-variation variable-gain amplifier,” in IEEE MTT-S Int. Microwave Symp. Dig., 2012, pp. 373-376.
    [18] D. S. Siao, J. C. Kao and H. Wang, “A 60 GHz Low Phase Variation Variable Gain Amplifier in 65 nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 24, no. 7, pp. 457-459, July 2014.
    [19] P.-C. Huang, L.-L. Kuo, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A 22-dBm 24-GHz PowerAmplifier Using 0.18-um CMOS Technology,” IEEE MTT-S International Microwave Symposium Digest (MTT), Anaheim, pp. 248-251, May 2010.
    [20] C. Yu, J. Feng, and D. Zhao, “A Ka-band 65-nm CMOS Neutralized Medium Power Amplifier for 5G Phased-array Applications”, IEEE MTT-S International Wireless Symposium (IWS), pp. 1-3, 2018.
    [21] C. C. Kuo, Y. H. Lin, H. C. Lu, and H. Wang, “A K-band Compact Fully Integrated Transformer Power Amplifier in 0.18-μm CMOS,” Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, pp. 597-599, Nov. 2013.
    [22] C. C. Hung, J. L. Kuo, K. Y. Lin and H. Wang, “A 22.5-dB Gain, 20.1-dBm Output Power K-band Power Amplifier in 0.18-µm CMOS,” 2010 IEEE Radio Frequency Integrated Circuits Symposium, Anaheim, CA, pp. 557-560, May 2010.
    [23] J. H. Chen, S. R. Helmi, R. Azadegan, F. Aryanfar and S. Mohammadi, “A Broadband Stacked Power Amplifier in 45-nm CMOS SOI Technology,” in IEEE Journal of Solid-State Circuits, vol. 48, no. 11, pp. 2775-2784, Nov. 2013.
    [24] J. H. Tsai, and T. W. Huang, “A 38-46 GHz MMIC Doherty Power Amplifier Using Post-Distortion Linearization,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 5, pp. 388-390, April 2007.
    [25] J. H. Tsai, and T. W. Huang, “A 38-46 GHz MMIC Doherty Power Amplifier Using Post-Distortion Linearization,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 5, pp. 388-390, April 2007.
    [26] Z. J. Huang , "A High-Gain Continuous Class- F Power Amplifier in 90-nm CMOS for 5G Communication ,“ in 2019 IEEE Asia-Pacific Microwave Conference
    [27] B. -Z. Lu, Y. Wang, Z. -J. Huang, K. -Y. Lin and H. Wang, "A 28-GHz High Linearity and High Efficiency Class-F Power Amplifier in 90-nm CMOS Process 106 for 5G Communications," 2020 15th European Microwave Integrated Circuits Conference (EuMIC), Utrecht, Netherlands, 2021, pp. 149-152.
    [28] Y. C. Liu, C. T. Chan, and S. H. Hsu, “A K-Band Power Amplifier with Adaptive Bias in 90-nm CMOS,” European Microwave Conference (EuMC), Rome, pp. 1376-1379, Oct. 2014.
    [29] S. N. Ali, P. Agarwal, S. Gopal, S. Mirabbasi and D. Heo, "A 25–35 GHz Neutralized Continuous Class-F CMOS Power Amplifier for 5G Mobile Communications Achieving 26% Modulation PAE at 1.5 Gb/s and 46.4% Peak PAE," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 2, pp. 834-847, Feb. 2019.
    [30] H. Jia, C. C. Prawoto, B. Chi, Z. Wang and C. P. Yue, "A 32.9% PAE, 15.3 dBm, 21.6–41.6 GHz power amplifier in 65nm CMOS using coupled resonators," 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC), Toyama, Japan, 2016, pp. 345-348.
    [31] W. Ye, K. Ma, K. S. Yeo and Q. Zou, "A 65 nm CMOS Power Amplifier With Peak PAE above 18.9% From 57 to 66 GHz Using Synthesized Transformer-Based Matching Network," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 10, pp. 2533-2543, Oct. 2015.
    [32] J. Xiao, I. Mehr and J. Silva-Martinez, "A High Dynamic Range CMOS Variable Gain Amplifier for Mobile DTV Tuner," in IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp. 292-301.
    [33] Y. Chang, B. Lu, Y. Wang and H. Wang, "A Ka-Band Stacked Power Amplifier with 24.8-dBm Output Power and 24.3% PAE in 65-nm CMOS Technology," 2019 IEEE MTT-S International Microwave Symposium (IMS), 2019, pp. 316-319.
    [34] W. Huang, J. Lin, Y. Lin and H. Wang, "A K-Band Power Amplifier with 26-dBm Output Power and 34% PAE with Novel Inductance-based Neutralization in 90-nm CMOS," 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2018, pp. 228-231.
    [35] Y. Chen, Y. Lin, J. Lin and H. Wang, "A Ka-Band Transformer-Based Doherty Power Amplifier for Multi-Gb/s Application in 90-nm CMOS," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 12, pp. 1134-1136, Dec. 2018.
    [36] 林禎芳,38 GHz 可變增益放大器與單邊帶調變混頻器設計,國立臺灣師範大學電機工程研究所碩士論文,2019年
    [37] 陳易廷,應用於5G行動通訊之毫米波可變增益放大器設計,國立臺灣師範大學電機工程研究所碩士論文,2022年
    [38] 鄭友東,使用 28 奈米 CMOS 實現高增益高效率的 Ka-band Class-F 功 率放大器與極寬頻分佈式功率放大器之研究,國立臺灣大學電機工程研究所碩士論文,2019年

    無法下載圖示 電子全文延後公開
    2028/08/14
    QR CODE