簡易檢索 / 詳目顯示

研究生: 陳綺萱
Chen, Chi-Hsuan
論文名稱: 深度學習之專利分析研究
Patent Analysis of Deep Learning
指導教授: 曾元顯
Tseng, Yuen-Hsien
學位類別: 碩士
Master
系所名稱: 圖書資訊學研究所
Graduate Institute of Library and Information Studies
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 87
中文關鍵詞: 深度學習深度神經網絡專利分析
DOI URL: http://doi.org/10.6345/THE.NTNU.GLIS.005.2019.A01
論文種類: 學術論文
相關次數: 點閱:284下載:48
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究旨在探討深度學習在各國的發展時間與成長趨勢,以及在相關學科 與應用領域上之發展狀況。研究採用專利計量分析法與內容探勘工具 CATAR, 針對美國專利及商標局 1976 至 2018 年之深度學習領域專利進行分析。研究結 果分為四個面向:(1)專利成長趨勢與技術生命週期;(2)專利數分析與趨 勢分析;(3)專利引用分析;(4)專利主題與專利關聯度分析。
研究發現:(1)深度學習領域的技術生命週期正處於成長階段,其專利 申請與公告的延遲時間平均約為 1.75 年;(2)高生產力專利權人國別依序為 美國、日本、以色列、韓國、中國、德國以及加拿大,這七個國家的專利就佔 了整體的 93%,專利高生產力發明人國籍依序為美國、中國、韓國、以色列、 日本、印度以及加拿大;(3)在 103 組專利權人與專利發明人國家組合中, 有 78 組與美國有關;(4)主要引用的學科領域為深度學習、神經網絡以及語 音識別;(5)應用領域有語音識別、影像分析、圖像識別、醫學圖像、以及 車輛控制系統等;(6)臺灣可以參考與學習以色列與韓國的發展模式,在研 究領域方面,臺灣可以往醫學圖像與診斷、外科以及鑑定這個方面多加琢磨。 研究建議:(1)增加關鍵詞(2)針對不同面向進行更深入與更具主題性的研 究(3)針對深度學習領域之研究論文進行研究。

The purpose of this study was to explore the development and the growth trend of deep learning in different countries. Also, the situation of deep learning in other related subjects and the application in different fields. This study used patent analysis and the content mining tool - CATAR to analyze the patents in the field of deep learning from 1976 to 2018 searching from USPTO.
The findings of this paper are as follows: (1) The technology life cycle of deep learning is in the growth stage, and on average, the issue date is 1.75 years later than the applied date. (2) On patent assignee's nationality, the countries of high productivity are the US, Japan, Israel, South Korea, China, Germany, and Canada, and patents in these countries account for 93% of the total. On patent inventor's nationality, the countries of high productivity are the US, China, South Korea, Israel, Japan, India, and Canada. (3) Among 103 national groups of assignees and inventors, there are 78 groups related to the US. (4) Citations are mainly related to deep learning, neural networks, and speech recognition. (5) Applications focus on speech recognition, image analysis, image recognition, medical image, and vehicle control systems. (6) Taiwan can learn from Israel and South Korea, and research on medical image. Based on the findings of this study, there are three suggestions: (1) Add keywords. (2) Research on specific subjects intensively. (3) Research on papers in the field of deep learning.

第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 2 第三節 研究範圍與限制 3 第四節 名詞解釋 4 第貳章 文獻探討 6 第一節 深度學習 6 第二節 專利分析 13 第三節 專利資料庫、專利分析軟體以及參考文獻剖析工具 22 第參章 研究設計與實施 29 第一節 研究方法 29 第二節 研究對象與工具 30 第三節 研究實施與步驟 32 第肆章 研究結果與分析 40 第一節 專利成長趨勢與技術生命週期 40 第二節 專利數分析與趨勢分析 43 第三節 專利主題與專利關聯度分析 56 第四節 專利引用分析 64 第伍章 研究發現與建議 71 第一節 研究發現 71 第二節 研究建議 75 參考文獻 76 附錄 82

36氪(2017)。Gartner預言2018十大科技趨勢。上網日期2018年6月20日,檢自:https://www.bnext.com.tw/article/47398/gartner-2018-technology-trends-ai-digital-iot-big-data
Book思議(2017a)。專利-日本特許 J-PlatPat。上網日期2018年12月4日,檢自:http://book.lib.ksu.edu.tw/blog/1595/%E5%B0%88%E5%88%A9%EF%BC%8D%E6%97%A5%E6%9C%AC%E7%89%B9%E8%A8%B1-j-platpat
Book思議(2017b)。專利-中國國家知識產權專利檢索及分析。上網日期2018年12月4日,檢自:http://book.lib.ksu.edu.tw/blog/1632/%E5%B0%88%E5%88%A9%EF%BC%8D%E4%B8%AD%E5%9C%8B%E5%9C%8B%E5%AE%B6%E7%9F%A5%E8%AD%98%E7%94%A2%E6%AC%8A%E5%B0%88%E5%88%A9%E6%AA%A2%E7%B4%A2%E5%8F%8A%E5%88%86%E6%9E%90
Lynn(2017)。從人工智慧、機器學習到深度學習,不容錯過的人工智慧簡史。上網日期2018年6月19日,檢自:https://kopu.chat/2017/07/03/ai-ml-history/
曲建仲(2017)。翻轉人類未來的AI科技:機器學習與深度學習。上網日期2018年6月19日,檢自:https://technews.tw/2017/10/05/ai-machine-learning-and-deep-learning/
余凯、贾磊、陈雨强、徐伟(2013)。深度学习的昨天,今天和明天。计算机研究与发展,50(9),1799-1804。
李宏毅(2016)。專題-人工智慧與AlphaGo什麼是深度學習。數理人文,(10)。
李春燕(2012)。基于专利信息分析的技术生命周期判断方法。现代情报,32(2),98-101。
柳倩、桂建军、杨小薇、曲艳丽(2016)。工业机器人传感控制技术研究现状及发展态势——基于专利文献计量分析视角。机器人,38(5),612-620。
陳達仁、黃慕萱(2018)。專利資訊檢索, 分析與策略。臺北市:華泰。
智庫百科(2014)。專利分析法。上網日期2018年6月4日,檢自: http://wiki.mbalib.com/zh-tw/%E4%B8%93%E5%88%A9%E5%88%86%E6%9E%90%E6%B3%95
曾元顯(2011)。文獻內容探勘工具-CATAR-之發展和應用。圖書館學與資訊科學,37(1)。
曾元顯、林瑜一(2011)。內容探勘技術在教育評鑑研究發展趨勢分析之應用。教育科學研究期刊,56(1),129-166。
經濟部智慧財產局(2018)。國際專利分類查詢。上網日期2018年10月17日,檢自: https://www.tipo.gov.tw/sp.asp?xdurl=mp/lpipcFull.asp&ctNode=7231&mp=1
葉士緯、黃振榮(2017)。合作專利分類(CPC)實施現況之探討與應用。智慧財產權月刊,217。
維基百科(2016)。專利地圖。上網日期2018年6月4日,檢自: https://zh.wikipedia.org/wiki/%E5%B0%88%E5%88%A9%E5%9C%B0%E5%9C%96
羅思嘉(2007)。專利計量分析與應用。國立成功大學圖書館館刊,(16)。
Anand Rao, Joseph Voyles, & Pia Ramchandani (2017). Top 10 artificial intelligence (AI) technology trends for 2018. 上網日期2018年6月20日,檢自:http://usblogs.pwc.com/emerging-technology/top-10-ai-tech-trends-for-2018
Aslani, A., Mazzuca-Sobczuk, T., Eivazi, S., & Bekhrad, K. (2018). Analysis of bioenergy technologies development based on life cycle and adaptation trends. Renewable Energy, 127, 1076-1086.
Breitzman, A. F., & Mogee, M. E. (2002). The many applications of patent analysis. Journal of Information Science, 28(3), 187-205.
Carrio, A., Sampedro, C., Rodriguez-Ramos, A., & Campoy, P. (2017). A Review of Deep Learning Methods and Applications for Unmanned Aerial Vehicles. Journal of Sensors, 2017.
Chen, C. C., Yang, K. H., Kao, H. Y., & Ho, J. M. (2008, March). BibPro: A Citation parser based on sequence alignment techniques. In Advanced Information Networking and Applications-Workshops, 2008. AINAW 2008. 22nd International Conference on (pp. 1175-1180). IEEE.
Cobo, M. J., López‐Herrera, A. G., Herrera‐Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382-1402.
Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981-1012.
Deng, L., Li, J., Huang, J. T., Yao, K., Yu, D., Seide, F., ... & Gong, Y. (2013). Recent advances in deep learning for speech research at Microsoft. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on(pp. 8604-8608). IEEE.
Ernst, H. (2003). Patent information for strategic technology management. World patent information, 25(3), 233-242.
Espacenet. (2018). Espacenet patent search. 上網日期2018年12月4日,檢自: https://www.epo.org/searching-for-patents/technical/espacenet.html#tab-1
Gavilanes-Trapote, J., Río-Belver, R., Cilleruelo, E., & Larruscain, J. (2015). Recent Advances in Patent Analysis Network. In Enhancing Synergies in a Collaborative Environment(pp. 307-314). Springer, Cham.
Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., ... & Kim, R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama, 316(22), 2402-2410.
Gupta, D., Morris, B., Catapano, T., & Sautter, G. (2009, August). A new approach towards bibliographic reference identification, parsing and inline citation matching. In International Conference on Contemporary Computing (pp. 93-102). Springer, Berlin, Heidelberg.
Heaton, J. B., Polson, N. G., & Witte, J. H. (2017). Deep learning for finance: deep portfolios. Applied Stochastic Models in Business and Industry, 33(1), 3-12.
Iwami, S. (2017). Study on the destination of research via knowledge flows. Scientometrics, 112(1), 273-288.
Kim, D. H., Lee, B. K., & Sohn, S. Y. (2016). Quantifying technology–industry spillover effects based on patent citation network analysis of unmanned aerial vehicle (UAV). Technological Forecasting and Social Change, 105, 140-157.
Kim, J., Lee, J., Kim, G., Park, S., & Jang, D. (2016). A hybrid method of analyzing patents for sustainable technology management in humanoid robot industry. Sustainability, 8(5), 474.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.
Lee, S., Yoon, B., Lee, C., & Park, J. (2009). Business planning based on technological capabilities: Patent analysis for technology-driven roadmapping. Technological Forecasting and Social Change, 76(6), 769-786.
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical image analysis, 42, 60-88.
Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face attributes in the wild. In Proceedings of the IEEE International Conference on Computer Vision (pp. 3730-3738).
Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1.
Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep Face Recognition. In BMVC (Vol. 1, No. 3, p. 6).
Porter, A. L., & Cunningham, S. W. (2004). Tech mining: exploiting new technologies for competitive advantage (Vol. 29). John Wiley & Sons.
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117.
Sharma, P., & Tripathi, R. C. (2017). Patent citation: A technique for measuring the knowledge flow of information and innovation. World Patent Information, 51, 31-42.
Sohangir, S., Wang, D., Pomeranets, A., & Khoshgoftaar, T. M. (2018). Big Data: deep learning for financial sentiment analysis. Journal of Big Data, 5(1), 3.
Song, L., Geng, Y. S., & Wang, X. G. (2013). Research on Evaluation Method of Ability of Enterprise Technology Competition Based on Patent Analysis. In Informatics and Management Science IV (pp. 409-417). Springer, London.
Tkaczyk, D., Collins, A., Sheridan, P., & Beel, J. (2018, May). Machine Learning vs. Rules and Out-of-the-Box vs. Retrained: An Evaluation of Open-Source Bibliographic Reference and Citation Parsers. In Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries (pp. 99-108). ACM.
Tseng, C. Y., & Ting, P. H. (2013). Patent analysis for technology development of artificial intelligence: A country-level comparative study. Innovation, 15(4), 463-475.
Tseng, Y. H., Lin, C. J., & Lin, Y. I. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216-1247.
United States Patent and Trademark Office. (2015). General information concerning patents. 上網日期2018年10月26日,檢自: https://www.uspto.gov/patents-getting-started/general-information-concerning-patents
United States Patent and Trademark Office. (2018a). Patent Number. 上網日期2018年10月26日,檢自: https://www.uspto.gov/patents-application-process/applying-online/patent-number
United States Patent and Trademark Office. (2018b). Patent Classification. 上網日期2018年10月26日,檢自: https://www.uspto.gov/patents-application-process/patent-search/classification-standards-and-development
United States Patent and Trademark Office. (2018c). Search for patents. 上網日期2018年10月26日,檢自: https://www.uspto.gov/patents-application-process/search-patents
United States Patent and Trademark Office. (2018d). Search Patent Classification Systems. 上網日期2018年10月17日,檢自: https://www.uspto.gov/web/patents/classification/index.htm
VantagePoint. (2018). Products. 上網日期2018年12月4日,檢自: https://www.thevantagepoint.com/products/4-products/vantagepoint/15-turn-information-into-knowledge.html
Wang, Y., Bao, T., Ding, C., & Zhu, M. (2017). Face recognition in real-world surveillance videos with deep learning method. In Image, Vision and Computing (ICIVC), 2017 2nd International Conference on (pp. 239-243). IEEE.
Wikipedia. (2018). Google Patents. 上網日期2018年12月4日,檢自: https://en.wikipedia.org/wiki/Google_Patents
You, Q., Luo, J., Jin, H., & Yang, J. (2015). Robust Image Sentiment Analysis Using Progressively Trained and Domain Transferred Deep Networks. In AAAI (pp. 381-388).
Zhang, X., Zou, J., Le, D. X., & Thoma, G. R. (2011). A structural SVM approach for reference parsing. BMC bioinformatics, 12(3), S7.

下載圖示
QR CODE