簡易檢索 / 詳目顯示

研究生: 林鉅程
Chu Cheng Lin
論文名稱: 三維暫態模擬溫度場與應力場應用於 316L不銹鋼銲接分析之研究
Three-dimension simulation of transient temperature field and stress distribution applied on 316L stainless steel welding
指導教授: 鄭慶民
Cheng, Ching-Min
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 98
中文關鍵詞: 雷射銲接有限元素分析溫度場分析應力應變分析
英文關鍵詞: Laser welding, ANSYS, Temperature field, Angular distortion
論文種類: 學術論文
相關次數: 點閱:300下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用有限元素軟體對不銹鋼板材316L 進行CO2 雷射銲接模擬
    分析。模擬過程中,316L 不銹鋼的各種高溫物理參數以模擬軟體JMATPRO
    分析結果所獲得,做為模擬分析的依據。本研究對板材進行銲接溫度場與
    銲後應力應變場分佈的模擬分析,並考慮非線性材料特性進行熱-力結構耦
    合分析過程。
    溫度分析中,本研究採用67%的熱效率進行熱源模擬,銲接分析輸入
    熱源的型式為高斯體熱源。使用獨立體熱源型式進行薄板材料三維模擬,
    獲得的分析溫度與實驗結果僅有些許的誤差。角變形分析結果,經模擬分
    析與銲接實驗發現,銲件在銲接冷卻後發生的角變形量相當小。橫向應力
    分析中,因銲接熱源的高溫作用使得銲道附近有較高的溫度梯度,金屬板
    材因銲接受熱而膨脹,但因遠離銲道材料的拘束,銲道附近形成壓縮應
    力,也造成壓縮應變的發生。在銲接過程中,隨著熱源的消失,銲道從熔
    融金屬開始凝固冷卻,此時體積產生收縮,於銲縫處存在一拉伸應力。當
    板材溫度由高溫降至室溫時,體積仍持續收縮,造成銲縫處的拉伸應力向
    上提升。縱向應力分析結果顯示,在銲道的起點與終點處皆有壓縮應力存
    在,中間區則為拉伸應力。

    This study simulated 316L stainless steel welding by ANSYS, and the
    welding method is CO2 laser welding. The high temperature physical properties
    of material are obtained by JMATPRO simulation for database establishment.
    The research is a simulation analysis of welding against temperature field and
    strain-stress field distribution. In that, nonlinear material characteristics within
    thermo -mechanical coupling process were considered.
    The 3D simulation of thin sheet metal used independent Gaussian cylinder
    heat source which possesses 67% thermo-efficiency. Then, one would find
    there exists little error between the temperature of experiment and the actual
    measurement. By welding experiment, it was discovered that the angular
    distortion of workpiece was quite small after welding. For horizontal stress
    analysis, high temperature of welding heat source results in a larger gradient
    along weld bead, where metal material expands. However, the region of
    surrounding metal with cold temperature restrains the expansion of welding
    bead, so the compressive stress and stain occur. Along with the decrease of
    temperature, fusing metal in weld bead starts to solidify and the volume of
    material shrinks continuously. Simultaneously, tensile stress increase in weld
    bead. For vertical stress analysis, that the compressive stress exists both ends of
    weld bead is contrary to the tensile stress occurs in the middle.

    IV 目錄 摘要......................................................II Abstract.................................................III 目錄......................................................IV 表目錄..................................................VIII 圖目錄....................................................IX 第一章 緒論.................................................1 1.1 研究背景...............................................1 1.2 研究動機...............................................2 1.3 研究目的...............................................3 第二章 文獻探討.............................................4 2.1 不銹鋼316L 之特性與成份..................................4 2.1.1 不銹鋼316L 之特性.....................................4 2.2 銲接變形...............................................6 2.3 銲接殘留應力............................................7 2.3.1 銲接殘留應力簡介 .....................................7 2.3.2 銲接殘留應力的形成....................................8 2.3.3 材料性質對銲件變形與殘留應力之影響......................12 2.4 雷射銲接技術...........................................13 2.4.1 銲接速度與銲接深度之關係..............................16 2.5 有限元素法............................................18 2.5.1 ANSYS 有限元素分析軟體...............................18 2.5.2 APDL 參數設計語言....................................20 2.6 銲接溫度場的熱傳導分析理論...............................22 2.7 多重物理現象之耦合分析..................................26 2.7.1 軟體分析流程.........................................28 2.7.2 定義材料屬性.........................................29 2.7.3 模型的建立與網格劃分..................................30 2.8 非線性分析.............................................33 2.8.1 材料非線性...........................................33 2.8.2 狀態非線性...........................................33 2.8.3 幾何非線性...........................................34 2.9 熱邊界條件.............................................37 2.10 銲接溫度場研究發展.....................................38 2.11 銲接變形研究發展.......................................41 2.12 銲接應力應變研究發展...................................43 第三章 分析方法與步驟.......................................45 3.1 銲接方式與材料規格......................................45 3.2 銲接條件...............................................46 3.3 假設條件設立...........................................46 3.3.1 有限元素模型之假設....................................47 3.4 材料特性...............................................47 3.5 有限元素模型設定........................................51 3.5.1 元素類型.............................................51 3.5.2 初始條件與邊界條件....................................54 3.5.3 設定時間步長與大應變效應...............................55 3.5.4 暫態積分與線性搜索....................................56 3.6 熱源模型...............................................56 3.6.1 高斯熱源分佈:面熱源...................................56 3.6.2 高斯熱源分佈:體熱源...................................59 3.6.3 組合熱源.............................................61 3.7 銲接實驗設備...........................................63 3.8 銲接實驗之溫度量測......................................64 3.9 銲接前置作業...........................................65 第四章 實驗結果與討論.......................................66 4.1 銲接溫度場之分析.......................................66 4.1.1 銲接熱源之選取.......................................66 4.2 溫度場模擬分佈.........................................67 4.2.1 縱向銲接熱循環.......................................70 4.2.2 橫向銲接熱循環.......................................74 4.3 銲接變形之分析.........................................77 4.3.1 角變形分析..........................................78 4.3.2 縱向變形分析.........................................81 4.4 銲接應變場分析.........................................83 4.5 銲接應力場分析.........................................84 4.5.1 縱向應力分析.........................................85 4.5.2 橫向應力分析.........................................87 第五章 結論與建議...........................................90 5.1 結論..................................................90 5.2 建議..................................................91 第六章 參考文獻............................................92

    【1】 周長彬等編著,”銲接學”,全華科技圖書,pp. 199-204 (2001).
    【2】 王振欽,”銲接學”,高立圖書有限公司,pp. 2134-3140 (2005).
    【3】Metal handbook, 9th edn, Vol.3, Ohio, American Society for Metals, (1980).
    【4】 曾光宏,”不銹鋼銲件變形與殘留應力之研究”,國立交通大學,博 士論文(2000).
    【5】 ″Welding Handbook″, 8th edn, Vol. 1, Miami, American Welding Society(1987).
    【6】 汪建華,陸浩, ”銲接殘餘應力形成機制與消除原理若干問題的討論”, 焊接學報,Vol.23,No. 3 (2002).
    【7】 田錫唐, ”焊接結構”,機械工業出版社,10 (1996).
    【8】 米谷茂, ”殘餘應力的產生及對策[M]”,機械工業出版社,(1983).
    【9】 王寬福, ”壓力容器焊接結構工程分析”,化學工業出版社,pp. 20-50 (1998).
    【10】 蔡曜隆, ”銲接溫度與應力之分析實驗”,國立交通大學,碩士論文 (2001).
    【11】 謝欣涵,”不銹鋼薄板應用脈衝式雷射銲接之數值分析”,台灣師範大學,碩士論文 (2008).
    【12】 Jeng J. Y, Mau T. F, Leu S. M, ″Prdiction of laser butt joint welding parameters using back propagation and learning vector quantization networks″, Journal of materials Processing Technology, Vol.99, pp. 207-218
    (1988).
    【13】 Li Z, Gobbi S. L, Norris I, Zolotovsky S, Richter K. H, ″Laser welding Techniques for titanium alloy sheet″, Journal of materials Processing Technology, Vol. 65, pp. 203-208 (1997).
    【14】 李存洲,”激光深熔焊場的數值模擬研究”,北京航空航天大學,碩士論文 (2004).
    【15】 金岡優,”雷射加工”,新武機械貿易股份有限公司,pp. 113-150 (2007).
    【16】 李景湧,”有限元法”,北京郵電大學出版社,(1999).
    【17】 陳炳森,”計算機輔助焊接技術”,北京機械工業出版社,pp. 105-130 (1999).
    【18】 譚建國,”使用ANSYS6.0 進行有限元分析”,北京大學出版社,pp. 1-13(2002).
    【19】王國強,”實用工程數值模擬技術及其在ANSYS 上的實踐”,西北工業大學出版社,pp. 1-187 (2000).
    【20】 Moaveni S, ″Finite Element Analysis-Theory And Application with ANSYS″.
    【21】 李冬林,”焊接應力和變形的數值模擬研究”,武漢理工大學,碩士論文(2003).
    【22】 董航海,”激光薄板拼焊過程溫度場與應力應變場之數值分析”,華中科技大學,碩士論文 (2004).
    【23】 鄭欽源,”有限元素法應用於7075 鋁合金銲接分析之研究”,台灣師範大學,碩士論文 (2007).
    【24】 Dowden J, Davis M and Kapadia P, ″Some aspect of the fluid dynamics of laser welding″, Journal of fluid mechanics, Vol. 126, pp. 123-146 (1983).
    【25】 Swift-hook D. T, Gick AEF, ″Penetration welding with lasers″, Welding Journal, Vol.52, pp.492-499 (1973).
    【26】 Shim Y, Feng Z, Lee S, Kim D, Jaeger J, ″Determination of residual stresses in thick section weldments″, Welding Journal, 71(9), pp. 305-312 (1992).
    【27】 Paley, Z, Hibbert P. D, ″Computation of temperature in actual weld design″, Welding Journal, 54(11), pp. 385-392 (1975).
    【28】 Wang J, Murakawa H, Yuan M.G, Yang H.Q, ″Improvement in numerical accuracy and stability of 3-D FEM analysis in welding″, Welding Journal, Vol.75, No.4, pp.129-134 (1996).
    【29】 Chande T, Mazumder J, ″Estimating effect of processing conditions and variable properties upon pool shape , cooling rates and absorption coefficient in laser welding″, J. Appl. Phys, 56(7), pp. 1981-1986 (1984).
    【30】 Mazumber J, Steen W. M, ″Heat transfer model for cw laser material process″, J. Appl. Phys, 51(2), pp. 941-947 (1980).
    【31】 Reed C. B, Natesan K, Xu Z, Smith D. L, ″The effect of laser welding process parameters the mechanical and microstructural properties of V-4Cr-4Ti structural materials″, Journal of Nuclear Material, pp. 1206-1209 (2000).
    【32】 Steen W.M, Dowden J, Davis M and Kapadia P, ″A point and line source model of laser keyhole welding″, J. appl. phys, Vol. 21, pp. 1255-1260 (1988).
    【33】 Akhter R, Davis M, Dowden J, Kapadia P, Ley M and Steen W. M, ″A method for calculating the fused zone profile of laser keyhole welds″, J. Phys. D: Appl. Phys 21, pp. 23-28 (1989).
    【34】 Wang J.H, Lu H, Hidekazu M, ″An FEM model of buckling distortion during welding of thin plate″, J. of Shanghai Jiaotong University, Vol. 4, No.2, pp.69-72 (1999).
    【35】 Lambrakos S. G, Metzbower E. A, Moore P. G, Dunn J. H, ″A numerical model for deep penetration laser welding process″, ICALEO, pp. 40-52 (1991).
    【36】 Yang Y. S, Hsu C. R, ″Heat flow in laser die blank welding, Journal of laser Applications″, Vol. 15, No.1, Spring , pp. 17-24 (1993).
    【37】 Voelkel D. D, Mazumder J, ″Visualization and dimensional measurement of the laser weld pool″, Welding Journal, Feb, (1989).
    【38】 Taylar G.A, Hughes M, Strusevich N, Pericleous K, ″Finite volume methods applied to the computational modelling of welding phenomena″, Applied Mathematical Modeling, 26(2), pp. 309-320 (2002).
    【39】 Wen S. W, Hilton P, Farrugia D. C.J,″Finite Element Modelling of a Submerged Arc Welding Process. Journal of Materials Processing Technology″, 119(1-3), pp. 203-209 (2001).
    【40】 Lu F, Yao S, Lou S and Li Y, ″Modeling and finite element analysis on GTAW arc and weld pool″, Computational Materials Science, Vol. 29, pp. 371-378(2004).
    【41】 Lei Y. C, Yu W. X, and Li C. H, Cheng X. N, ″Simulation on temperature field of TIG welding of copper without preheating″, Transactions of Nonferrous Metals Society of China Vol. 16, No. 44, pp. 838-842 (2006).
    【42 】 GuoMing H, Jian Z and jianQang L, ″Dynamic simulation of the temperature field of stainless laser welding″, Materials and Design, Vol. 28, pp. 240-245 (2007).
    【43】 Sabbaghzadeh J, Azizi M and Torkamany M. J, ″Numerical and experimental investigation of seam welding with a pulsed laser″, Optics and Laser Technology, Vol. 40, pp. 289-296 (2008).
    【44 】Casalino G, Ghorbel E, ″Numerical model of CO2 laser welding of thermoplastic polymers″, Journal of materials processing technology Vol. 207, pp. 63-71 (2008).
    【45】 Karlsson L, Jonsson M, Lindgren L. E, Nasstrom M,″Residual stresses and deformations in a welded thin-walled pipe″, Pressure Vessels and Piping Division, Vol. 173, No. 7, pp. 23-37 (1989).
    【46】 McDill J. M. J., Oddy A. S and Reed R. C,″Predicting residual stress and distortion when welding aeroengine alloys″, Canadian Aeronauticsand Space Journal, Vol. 44, No. 2, pp. 68-72 (1998).
    【47】 陳楚等,”軸對稱熱彈塑性應力有限元分析在焊接中的應用”,焊接學報,8(4),pp. 196-203 (1987).
    【48】 汪建華等,”管板接頭三維焊接變形的數值模擬”,焊接學報,16(3),pp.140-145 (1995).
    【49】 汪建華等,”壓縮機焊接變形的三維數值類比”,機械工程學報,Vol.32,No. 1,pp. 85-91 (1996).
    【50】 Dong Z. B, Wel Y. H, ″Three dimensional modeling weld solidification cracks in multipass welding″, Theoretical and Applied Fracture Mechanics Vol. 46, pp.156-165 (2006).
    【51】 He X. D, Zhang J. X, Gong S. L, Feng Y. R, ″Finite element analysis of laser welding residual stress and distortion in welded joints of TC4 titanium alloy″,
    Material Science and Engineerin, Vol.8, pp.39-43 (2005).
    【52】 Tall L, ″Calculation of residual stresses in perspective″, IEEE Transactions on Nuclear Science, pp. 49-62 (1978).
    【53】 徐家園,複雜構件三維焊接過程虛擬分析技術研究”,廣西大學,碩士論文 (2003).
    【54】 上田幸雄等,”有限要素法”,熱彈塑性舉動解析,熔接學會誌,Vol. 6,pp. 61-63 (1973).
    【55】 Inoue T and Ju D. Y., ″Thermo-mechanical simulation of some types of steady continuous casting processes″, Advances in Continuum Mechanics, O. Bruller, V. Mannl, J. Najar, (eds.), Spinger-Verlag, pp. 389-406 (1991).
    【56】魏豔紅,劉仁培,董祖玨,”不銹鋼焊接凝固裂紋應力應變場數值模擬結果分析[J] ”, 焊接學報,21(6),pp.36-38 (2000).
    【57】劉仁培,董祖玨,魏豔紅,” 不銹鋼焊接凝固裂紋應力應變場數值模擬模型的建立[J] ”, 焊接學報,20(4),pp. 238-243 (1999).
    【58】 Mahapatra M.M, Datta G.L, Pradhan B, Mandal N.R, ″Three-dimensional finite element analysis to predict the effects of SAW process parameters on temperature distribution and angular distortions in single-pass butt joints with top and bottom reinforcements″. International Journal of Pressure Vessels and piping, Vol.83, pp.721-729 (2006).
    【59】 陳精一,”電腦輔助工程實務分析”,全華出版社,pp.3.47~3.48 (2004).
    【60 】Pavelic V, Tanbakuchi R, Uyehara O.A, ″Experiment and computed temperature histories in gas tungsten-arc welding of thin plates″, Welding Journal, Vol.48, No.7, pp. 295-305 (1969).
    【61】 Draugelates U, Bouaifi B, Steinborn S, ″Simulation of laser beam welding of magnesium alloys″, Magnesium Science & Technology, Jerusalem, Nov. 10-12, Magnesium Research Institute, Ltd., pp. 309- 314 (1998).
    【62】 Mueller R, ″A model for predicting keyhole and fusion zone depths in blind keyhole welding″, In Processing ICALEO 94, pp. 509-518 (1994).
    【63】 Sonti N, Amateau M. F, ″Finite-element modeling of heat flow in deep penetration laser welds in aluminum alloys″, Numerical heat transfer, part A, Vol.16, pp.351-378 (1989).

    無法下載圖示 本全文未授權公開
    QR CODE