簡易檢索 / 詳目顯示

研究生: 黃耀德
Yao-De Huang
論文名稱: 以化學氣相沉積法製備石墨烯及其官能化
The Fabrication of Graphene by Chemical Vapor Deposition and Functionalization
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 90
中文關鍵詞: 石墨烯化學氣相沉積法摻雜
英文關鍵詞: graphene, CVD, doping
論文種類: 學術論文
相關次數: 點閱:271下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯是以碳原子組成單層原子厚度的二維材料,具有良好的機械強度、化學穩定性、電子遷移率、高透光度等等的新穎材料,具有相當好的應用前景,例如薄膜場效電晶體(thin film field effect transistor)、薄膜透明電極(thin film transparent electrode)等等,故我們便開始著手研究石墨烯科學。
      製備石墨烯的方法非常多種,本論文採用常見的化學氣相沉積法(Chmeical Vapor Deposition ,CVD),以銅箔(Cu foil)作為金屬催化劑,使石墨烯薄膜成功穩定的成長在金屬基板上。為了將石墨烯轉印到適當之基材上,並能夠大量並快速準確地與太陽能電池、場效電晶體等光電元件製程相容,我們利用兩種方式:(一) PMMA法,以PMMA抓取石墨烯並以酸性溶液蝕刻基板,以人力轉印的技術使銅箔上的石墨烯能夠輕易地轉印到任何基板上。(二) 護貝機式熱脫膠,以膠膜黏取石墨烯,蝕刻後直接貼在基板上,通過護貝機熱滾軸完成脫膠。
      最後為了光電在元件應用性的改進,希望能夠(一)進一步降低石墨烯的電阻值,(二)致力於製備LWF或HWF的石墨烯。我們分別使用兩種有機小分子,以化學摻雜法(chemical doping)成功的得到LWF與HWF的石墨烯,並偵測其石墨烯所對應的功函數4.277與4.799且獲得比原始石墨烯小超過50%的電阻值,希望能有更廣泛的應用。

    Graphene, a novel material with 2D-planner which is composed of carbons with only one-atom-thick. The special properties of graphene included a high mechanical strength, good chemical stability, excellent electron mobility, and high transparency. Furthermore, graphene has already been shown promising applications, such as thin film effect transistors, thin film transparent electrodes...etc. So we start to investigate the science of graphene.
    There are many kinds of methods to prepare graphene, in this article, to grow graphene on metal substrate successfully and stably, we use the Chemical Vapor Deposition method and select to use Cu foil as the metal catalyst. Then for transfer graphene onto other substrate, we use two transfer methods, PMMA and roll to roll method. For PMMA method: CVD graphene was transferred by depositing PMMA on top of the graphene on substrates by spin coating, then underneath the graphene was dissolved by dipping the substrates in acidic solution, and then transferred onto substrate. Finally, the PMMA layer was dissolved with acetone , leaving the graphene film on the target substrate surface.
    For rollto roll method: We adhesion of a thin polymer supports to the graphene on the copper foil by passing between two rollers, then etched the copper foil by acidic solution. Finally, the graphene films are transferred from the polymer support onto substrate by removing the adhesive force holding the graphene films.
    Finally, to improve the application of opto-electronic devices. We try to decrease the resistance of graphene and devote preparation of low work function and high work function graphene and the resistance of graphene were decreased. So we use two small organic compound N-Fluorobenzenesulfonimide(NFSI) and 1-Nitropyrene(1-NP) respectively to get LWF and HWF graphene successfully by a simple chemical doping process respectively. The low and high work function graphene with the WF equal to4.277 , 4.799 were obtained respectively and the resistance were decreased successfully.

    謝誌…………………………………………………………………….....I 總目錄…………………………………………………………………...V 圖表目錄………………………………………………………………..IX 英文摘要………………………………………………………….......XIV 中文摘要………………………………………………………….......XVI 第一章 序論……………………………………...……………………...1 第二章 石墨烯的介紹………………………………………..…………6 2-1 石墨烯簡介……………………………….……………………6 2-2 石墨烯晶體結構………………………….….…...……………8 第三章 石墨烯的製備與轉印…………………..…………..…………10 3-1石墨烯的製備方法…………………………….…...…………10 3-1-1機械剝離法…………………………..………...………10 3-1-2碳化矽磊晶法……………………………...……..……12 3-1-3 氧化還原法………………………………….…..……13 3-1-4 化學氣相沉積法………………………………...……16 3-2轉印石墨烯………………………………...……..……………26 第四章 N型石墨烯的製備…………………………….………………29 4-1 化學氣相沉積法……………………………………...………29 4-2 溶液加熱法…………………………………….……..………33 4-3 光圖紋化金奈米粒子法………….……………..……………35 4-4 加熱退火法……………………………………...……………36 4-5 化學摻雜法……………………………………...……………38 第五章 實驗設備與原理…………………………………..…..………40 5-1 化學氣相沉積法………………………………………...……40 5-1-1 薄膜成長……………………………….……..………40 5-1-2 化學氣相沉積法的分類………………………...……40 5-1-3 建構實驗設備…………………………………...……41 5-1-3-1 高溫爐管與反應腔體…………………………42 5-1-3-2 氣體源及管線………………………..…..……43 5-1-3-3 完成CVD成長石墨烯裝置…………..………44 5-2 護貝機式膠膜剝離機……………………………….…..……44 5-3 拉曼光譜儀………………………………………….…..……45 5-3-1 拉曼效應…………………………………….…..……46 5-3-2 石墨烯的重要譜線……………………………...……47 5-4表面電位顯微鏡………………………………………………49 5-5 四點探針量測系統……………………………….……..……52 5-6 紫外光/可見光/近紅外線光譜儀……………………….....…53 5-7 X光光電子能譜儀……………………………………………54 第六章 實驗……………………………………………………………55 6-1 研究動機與目的…………………………...…………………55 6-2 以化學氣相沉積法製備石墨烯…………………..…….……56 6-3 轉印石墨烯至基板………………………………….…..……57 6-4 蝕刻液的選擇……………………………………...…………59 6-5 石墨烯的摻雜………………………………………...………60 6-5-1 LWF石墨烯…………………………………..…...…61 6-5-2 HWF石墨烯……………………………...…….……62 6-6 透光率測試………………………………...…………………63 6-7 電阻值的測量……………………………………...…………63 6-8 電阻值的測試………………………………….....…..………64 第七章 結果與討論…………………………….…………………...…65 7-1 拉曼鑑定…………………………………………...…………65 7-2 透光率的測量……………………………………….…..……68 7-2-1 原始石墨烯………………………………….………69 7-2-2 LWF石墨烯…………………………….……………69 7-2-3 HWF石墨烯……………………………………........72 7-3 電阻值的測量…………………………….……………..……74 7-3-1 原始石墨烯……………….………………….……….74 7-3-2 Low Work Function石墨烯………………..….……..75 7-3-3 High Work Function石墨烯…...………….…..…..…77 7-4 電阻值的變化……………………………………...…………79 第八章 結論………………………………………….……...…………82 未來展望……………………………………………………..…………83 參考文獻…………………………………………………………..……84

    (1) Phaedon Avouris Nano Lett. 2010, 10, 4285-4294.
    (2) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666-669.
    (3) Chen, J. H.; Jang, C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S. Nature Nanotechnology 2008, 3, 206-209.
    (4) Durkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Nano Letters 2004, 4, 35-39.
    (5) Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Science 2008, 321, 385-388.
    (6) Frank, I. W.; Tanenbaum, D. M.; Van der Zande, A. M.; McEuen, P. L. Journal of Vacuum Science & Technology B 2007, 25, 2558-2561.
    (7) Zhong Jin; Jun Yao; Carter Kittrell; James M. Tour Acs Nano 2011, 5, 4112-4117.
    (8) Lin, T. Q.; Huang, F. Q.; Liang, J.; Wang, Y. X. Energy & Environmental Science 2011, 4, 862-865.
    (9) Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Nano Letters 2009, 9, 4268-4272.
    (10) Loginova, E.; Bartelt, N. C.; Feibelman, P. J.; McCarty, K. F. New Journal of Physics 2008, 10, -.
    (11) A.N. Obraztsov; E.A. Obraztsova; A.V. Tyurnina; A.A. Zolotukhin Carbon 2007, 45, 2017-2021.
    (12) Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Angewandte Chemie-International Edition 2009, 48, 7752-7777.
    (13) Lin, Y. M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H. Y.; Grill, A.; Avouris, P. Science 2010, 327, 662-662.
    (14) Hass, J.; de Heer, W. A.; Conrad, E. H. Journal of Physics-Condensed Matter 2008, 20, -.
    (15) Latil, S.; Henrard, L. Physical Review Letters 2006, 97, -.
    (16) Blake, P.; Hill, E. W.; Neto, A. H. C.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Applied Physics Letters 2007, 91, -.
    (17) Zhang, Y. B.; Small, J. P.; Pontius, W. V.; Kim, P. Applied Physics Letters 2005, 86, -.
    (18) Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Science 2006, 312, 1191-1196.
    (19) de Heer, W. A.; Berger, C.; Wu, X. S.; First, P. N.; Conrad, E. H.; Li, X. B.; Li, T. B.; Sprinkle, M.; Hass, J.; Sadowski, M. L.; Potemski, M.; Martinez, G. Solid State Communications 2007, 143, 92-100.
    (20) Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E.; Dai, H. J. Nature Nanotechnology 2008, 3, 538-542.
    (21) Eda, G.; Fanchini, G.; Chhowalla, M. Nature Nanotechnology 2008, 3, 270-274.
    (22) A.N. Obraztsov; E.A. Obraztsova; A.V. Tyurnina; A.A. Zolotukhin Carbon 2007, 45, 2017-2021.
    (23) Sutter, P. W.; Flege, J. I.; Sutter, E. A. Nature Materials 2008, 7, 406-411.
    (24) Yu, Q. K.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S. Applied Physics Letters 2008, 93, -.
    (25) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Nature 2009, 457, 706-710.
    (26) Chae, S. J.; Gunes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. J.; Yoon, S. M.; Choi, J. Y.; Park, M. H.; Yang, C. W.; Pribat, D.; Lee, Y. H. Advanced Materials 2009, 21, 2328-+.
    (27) Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Science 2009, 324, 1312-1314.
    (28) Wei, D. C.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Nano Letters 2009, 9, 1752-1758.
    (29) Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.; Dubey, M.; Ajayan, P. M. Acs Nano 2010, 4, 6337-6342.
    (30) Li, Y. F.; Zhou, Z.; Wang, L. B. Journal of Chemical Physics 2008, 129, -.
    (31) Zhong Jin; Jun Yao; Carter Kittrell; James M. Tour Acs Nano 2011, 5, 4112-4117.
    (32) Deng, D. H.; Pan, X. L.; Yu, L. A.; Cui, Y.; Jiang, Y. P.; Qi, J.; Li, W. X.; Fu, Q. A.; Ma, X. C.; Xue, Q. K.; Sun, G. Q.; Bao, X. H. Chemistry of Materials 2011, 23, 1188-1193.
    (33) Sung Huh; Jaesung Park; Kwang S. Kim; Byung Hee Hong; Seung Bin Kim Acs Nano 2011, 5, 3639-3644.
    (34) Zhen-Huan Sheng; Lin Shao; Jing-Jing Chen; Wen-Jing Bao; Feng-Bin Wang; Xing-Hua Xia Acs Nano 2011, ASAP
    (35) Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Acs Nano 2010, 4, 1321-1326.
    (36) WILLIAM S. HUMMERS, JR.,; RICHARD E. OFFEMAN J Am Chem Soc 1958, 80, 1339.
    (37) Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Physical Review Letters 2006, 97, -.
    (38) Ferrari, A. C. Solid State Communications 2007, 143, 47-57.
    (39) Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X. Nano Letters 2007, 7, 2758-2763.
    (40) Nonnenmacher, M.; Oboyle, M. P.; Wickramasinghe, H. K. Applied Physics Letters 1991, 58, 2921-2923.
    (41) R. Mackel; H. Baumgiirtner,; J. Ren Review Science Instrument 1993, 64, 694-699.
    (42) Mackel, R.; Baumgartner, H.; Ren, J. Review of Scientific Instruments 1993, 64, 694-699.
    (43) Buh, G. H.; Chung, H. J.; Yi, J. H.; Yoon, I. T.; Kuk, Y. Journal of Applied Physics 2001, 90, 443-448.
    (44) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. J. Appl. Phys. 1995, 77, 3310-3314.
    (45) Jinho An; Edgar Voelkl; Ji Won Suk; Xuesong Li; Carl W. Magnuson ; Lianfeng Fu; Peter Tiemeijer; Maarten Bischoff; Bert Freitag; Elmira Popova; Rodney S. Ruoff Acs Nano 2011, 5, 2433-2439.
    (46) Benjamı´n Alema´n; William Regan; Shaul Aloni; Virginia Altoe; Nasim Alem; Cagˇ lar Girit; Baisong Geng; Lorenzo Maserati; Michael Crommie; Feng Wang; A. Zettl Acs Nano 2010, 4, 4762-4768.
    (47) Lewis Gomez De Arco; Yi Zhang; Cody W. Schlenker; Koungmin Ryu; Mark E. Thompson; Chongwu Zhou Acs Nano 2010, 4, 2865-2873.
    (48) Sukang Bae; Hyeongkeun Kim; Youngbin Lee; Xiangfan Xu; Jae-Sung Park; Yi Zheng; Jayakumar Balakrishnan; Tian Lei; Hye Ri Kim; Young Il Song; Young-Jin Kim; Kwang S. Kim; Barbaros O‥ zyilmaz ; Jong-Hyun Ahn; Byung Hee Hong; Sumio Iijima Nature Nanotechnology 2010, 5, 574.
    (49) Hung-Chieh Cheng; Ren-Jye Shiue; Chia-Chang Tsai; Wei-HuaWang; Yit-Tsong Chen Acs Nano 2011, 5, 2051-2059.
    (50) L. S. Panchakarla; K. S. Subrahmanyam; S. K. Saha; Achutharao Govindaraj; H. R. Krishnamurthy; U. V. Waghmare; C. N. R. Rao Adv. Mater. 2009, 21, 4726-4730.
    (51) Fethullah Gu¨ nes; Hyeon-Jin Shin; Chandan Biswas; Gang Hee Han; Eun Sung Kim; Seung Jin Chae; Jae-Young Choi; Young Hee Lee Acs Nano 2010, 4, 4595-4600.
    (52) L. S. Panchakarla; K. S. Subrahmanyam; S. K. Saha; Achutharao Govindaraj; H. R. Krishnamurthy; U. V. Waghmare; C. N. R. Rao Adv. Mater. 2009, 21, 4726-4730.
    (53) M. S. Dresselhaus; G. Dresselhaus Adv. phys. 2002, 51, 1.

    下載圖示
    QR CODE