簡易檢索 / 詳目顯示

研究生: 林禎芳
Lin, Chen-Fang
論文名稱: 38 GHz可變增益放大器與單邊帶調變混頻器設計
Design of 38 GHz Variable Gain Amplifier and Single-Sideband Mixer
指導教授: 蔡政翰
Tsai, Jen-Han
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 131
中文關鍵詞: 互補式金氧半導體製程可變增益放大器電流控制架構單邊帶調變混頻器鏡像抑制
英文關鍵詞: CMOS, Variable Gain Amplifier, Current Steering, Single-Sideband Mixer, Image Rejection Ratio
DOI URL: http://doi.org/10.6345/NTNU201900849
論文種類: 學術論文
相關次數: 點閱:134下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著毫米波頻段的發展,在相位陣列(Phase Array)架構的射頻收發器中,可變增益放大器及混頻器為重要的元件。由於互補式金氧半導體製程(CMOS)的進步,近年來已經可以將大部分的射頻電路整合在一起,且CMOS具有低功率消耗、低成本及高整合度的優勢,因此本論文將使用TSMC 65nm CMOS製程,設計實現38 GHz可變增益放大器與單邊帶調變混頻器。
    第一個電路為38 GHz低相位變化之可變增益放大器,採用兩級的電流控制架構(Current Steering),透過數位控制與相位補償技術,來維持在可變增益範圍內的低相位變化,及降低系統控制複雜度。當供應電壓Vdd為2 V,Vg1、Vg2分別為0.6 V、1.6 V時,在38 GHz有最高增益17.67 dB,可變增益範圍則是在2.61 dB ~ 17.67 dB,約有15.06 dB,相位差為2.69°,1-dB增益壓縮點之輸出功率OP1dB約為-0.68 dBm,整體功率消耗約為56.77 mW,整體晶片佈局面積為460 μm × 680 μm。
    第二個電路為38 GHz單邊帶調變混頻器,藉由給予兩顆混頻器正交訊號,將兩個相差180°的輸出訊號合成後,會達到鏡像抑制之功能。由於我們使用來產生正交訊號的多相位濾波器(Poly Phase Filter),對於製程變異相當敏感,因此最後實現的單邊帶調變混頻器有頻飄的狀況。當電晶體偏壓為0.4 V,LO驅動功率為3 dBm時,頻帶為31 ~ 40 GHz,增益範圍為-16.3 ± 0.5 dB,鏡像抑制則有35 dB,整體晶片佈局面積為710 μm × 770 μm。

    As the progress of the millimeter-wave band, variable gain amplifiers (VGA) and mixers play an important role in the phased-array radio frequency transceiver. Recently, the RF circuits have been into the Complementary Metal-Oxide Semiconductor (CMOS) process. And using the CMOS topology has the advantages of low power consumption, low cost and high integration. In this paper, 38 GHz VGA and single-sideband mixer (SSB Mixer) are presented, and implemented in TSMC 65nm CMOS technology.
    First, a 38 GHz low phase variation VGA has designed and implemented. The circuit adopted two current steering stages. To maintain low phase variations over the variable gain range and reduce system control complexity, we utilized digital control and phase compensation techniques. When the supply voltage is 2 V, Vg1 and Vg2 is 0.6 V and 1.6 V, the VGA has a peak gain of 17.67 dB at 38 GHz. The variable gain range is from 2.61 dB to 17.67 dB with a range of 15.06 dB, and the phase error is 2.69 °. The output power of -0.68dBm at 1-dB gain compression point. The DC power consumption is 56.77 mW, and the chip size is 460 μm × 680 μm.
    Second, a 38 GHz SSB Mixer has designed and implemented. By giving two mixer quadrature signals, the two output signals with 180° difference are combined to achieve the image suppression function. However, the poly phase filter which we use to be quadrature phase generator is sensitive to the process variation. Therefore, the SSB Mixer frequency shifted. When the bias is 0.4 V and LO drive power is 3 dBm, the gain range is -16.3 ± 0.5 dB from 31 to 40 GHz and the IRR is 35 dB. The chip size is 710 μm × 770 μm.

    摘要 I ABSTRACT III 誌謝 V 目錄 VII 圖目錄 XI 表目錄 XXI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 1 1.2.1 可變增益放大器 1 1.2.2 混頻器 2 1.3 研究成果 3 1.4 論文架構 4 第二章 38 GHz低相位變化之可變增益放大器設計 5 2.1 簡介 5 2.2 可變增益放大器之架構 6 2.2.1 Current Sterring架構[11][12] 7 2.2.2 數位控制及相位補償技術 7 2.3 可變增益放大器之設計參數 8 2.3.1 散射參數(S-parameters) 8 2.3.2 可變增益範圍(Gain Variation) 9 2.3.3 相位誤差(Phase Error) 10 2.3.4 雜訊指數(Noise Figure, NF) 10 2.4 低相位變化之可變增益放大器設計 10 2.4.1 主電路電晶體偏壓分析與選擇 10 2.4.2 主電路電晶體尺寸分析與選擇 12 2.4.3 Current Steering電晶體偏壓及尺寸分析與選擇 17 2.4.4 匹配網路設計 20 2.4.5 旁路電路設計 22 2.5 可變增益放大器之模擬結果 25 2.6 可變增益放大器之量測結果 32 2.7 結果與討論 44 2.8 總結 55 第三章 38 GHz單邊帶調變混頻器設計 57 3.1 簡介 57 3.2 混頻器之架構 58 3.2.1 被動電阻式環形混頻器(Passive Resistive Ring Mixer) 60 3.2.2 單邊帶調變混頻器(Single-Sideband Mixer, SSB Mixer) 61 3.3 單邊帶調變混頻器之設計參數 62 3.3.1 轉換增益/損耗(Conversion Gain/Loss) 62 3.3.2 轉換增益對LO驅動功率(Conversion Gain versus LO Power) 63 3.3.3 鏡像拒斥比(Image Rejection Ratio, IRR) 63 3.3.4 隔離度(Isolation) 64 3.4 單邊帶調變混頻器設計 64 3.4.1 混頻器電晶體尺寸與偏壓分析選擇 65 3.4.2 RF端與LO端Marchand Blaun設計 74 3.4.3 耦合器(Coupler) 78 3.4.4 匹配網路設計 80 3.4.5 多相位濾波器(Poly Phase Filter) 84 3.4.6 威爾金森功率合成器(Wilkinson Power Combiner) 87 3.5 單邊帶調變混頻器之模擬結果 88 3.5.1 混頻器模擬結果 89 3.5.2 單邊帶調變混頻器模擬結果 94 3.6 單邊帶調變混頻器之量測結果 99 3.7 結果與討論 113 3.8 總結 126 第四章 結論 127 參考文獻 129

    [1] D. Goovaerts, FCC unanimously opens nearly 11 GHz of spectrum for 5G [Online], Available:https://www.ecnmag.com/news/2016/07/fcc-unanimously-opens-nearly-11-ghz-spectrum-5g, 2016
    [2] B. W. Min and G. M. Rebeiz, “Ka-Band SiGe HBT Low Phase Imbalance Differential 3-Bit Variable Gain LNA,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 4, pp. 272-274, April 2008.
    [3] Z. M. Tsai, J. C. Kao, K. Y. Lin and H. Wang, “A compact low DC consumption 24-GHz Cascode HEMT VGA,” in 2009 Asia Pacific Microwave Conference, Singapore, 2009, pp. 1625-1627.
    [4] P. H. Lo, C. C. Lin, H. C. Kuo and H. R. Chuang, “A Ka-band CMOS Low-phase-variation Variable Gain Amplifier With Good Matching Capacity,” in Proc. 42nd Eur. Microw. Conf., Oct. /Nov. 2012, pp. 858-861.
    [5] Z. Jiang et al., “A 33.5–39 GHz 5-bit variable gain LNA with 4 dB NF and low phase shift,” in 2017 IEEE Asia Pacific Microwave Conference (APMC), Nov. 2017, pp. 1200-1202.
    [6] Y. K. Hsieh, J. L. Kuo, H. Wang and L. H. Lu, “A 60 GHz Broadband Low-Noise Amplifier With Variable-Gain Control in 65 nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 21, no. 11, pp. 610-612, Nov. 2011.
    [7] Jeng-Han Tsai, Jen-Wei Wang, Chung-Han Wu, “A V-band Variable Gain Amplifier with Low Phase Variation using 90 nm CMOS Technology,” Microwave and Optical Technology Letters, vol. 56, no. 8, pp. 1946-1949, Aug. 2014.
    [8] D. S. Siao, J. C. Kao and H. Wang, “A 60 GHz Low Phase Variation Variable Gain Amplifier in 65 nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 24, no. 7, pp. 457-459, July 2014.
    [9] H. C. Yeh, S. Aloui, C. C. Chiong and H. Wang, “A Wide Gain Control Range V-Band CMOS Variable-Gain Amplifier With Built-In Linearizer,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 2, pp. 902-913, Feb. 2013.
    [10] K. L. Feng “Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications,” in IEEE Int. Solid-State Circuits Conf., Feb. 1999 pp. 224-225.
    [11] J. Xiao, I. Mehr and J. Silva-Martinez, “A high dynamic range CMOS variable gain amplifier for mobile DTV tuner,” IEEE J. Solid-State Circuits, vol 42, pp. 292-301, Feb. 2007.
    [12] C. C. Kuo, Z. M. Tsai, J. H. Tsai, H. Wang, “A 71-76 GHz CMOS variable gain amplifier using current steering technique,” in IEEE RFIC Symp., June 2008, pp. 609-612.
    [13] 盧德任,毫米波低相位變異可變増益放大器與低雜訊放大器之研製,國立臺灣大學電信工程學研究所碩士論文,2012年
    [14] 羅珮華,毫米波CMOS低相位變化之可變增益放大器與類循環器射頻晶片之研製,國立成功大學電腦與通信工程研究所碩士論文,2011年
    [15] J. H. Tsai, and T. W. Huang, “35-65-GHz CMOS Broadband Modulator and Demodulator With Sub-Harmonic Pumping for MMW Wireless Gigabit Applications,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 10, pp. 2075-2085, Oct. 2007.
    [16] H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang, C.-L. Chang, and J.G.J. Chern, “Design and analysis of CMOS broad-band compact highlinearity modulators for gigabit microwave/millimeter-wave applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 20-30, Jan. 2006
    [17] J.-H. Tsai, “Design of 1.2-V broadband high data-rate MMW CMOS I/Q modulator and demodulator using modified Gilbertcell mixer,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1350-1360, May 2011.
    [18] S.-H. Weng, C.-H. Shen, H.-Y. Chang, “A wide modulation bandwidth bidirectional CMOS IQ modulator/demodulator for microwave and millimeter-wave gigabit applications,” in Proc. 7th EuMIC, Oct. 2012, pp. 8-11.
    [19] W.-H. Lin, W.-L. Chang, J.-H. Tsai, T.-W. Huang, “A 30–60 GHz CMOS sub-harmonic IQ de/modulator for high data-rate communication system applications,” in IEEE Radio Wireless Symp. Dig., Jan. 2009, pp. 462-465.
    [20] A. P. Freundorfer, K. Hamed, Y. Sun, Y. Antar, P. Frank, and D. Sawatzky, “A direct digital 2 Gb/s modulator/demodulator experiment in GaAs HBT at 30 GHz,” in Proc. Asia–Pacific Microw. Conf., Dec. 2006, pp. 1611–1614.
    [21] H.-Y. Chang, S.-H. Weng, and C.-C. Chiong, “A 30–50 GHz Wide Modulation Bandwidth Bidirectional BPSK Demodulator/ Modulator With Low LO Power,” IEEE Microw. Wireless Compon. Lett., vol. 19, pp. 332-334, May 2008.
    [22] 黃絹容,Ka頻帶升頻混頻器與I/Q調變器設計與實現,國立臺灣師範大學電機工程學系研究所碩士論文,2016年

    下載圖示
    QR CODE