簡易檢索 / 詳目顯示

研究生: 鄧舒帆
Deng, Shu-Fan
論文名稱: 以科技接受模式探討數位學習專班學生之自我調整學習能力與數位學習成效關係之研究
A Study on the Relationship of Self-Regulated Learning Ability and Learning Outcomes in E-learning Master Programs based on Technology Acceptance Model
指導教授: 李懿芳
Lee, Yi-Fang
口試委員: 黃政傑
Hwang, Jenq-Jye
宋修德
Sung, Hsiu-Te
李懿芳
Lee, Yi-Fang
口試日期: 2023/07/25
學位類別: 碩士
Master
系所名稱: 工業教育學系技職教育行政碩士在職專班
Department of Industrial Education_Continuing Education Master's Program of Administration in Technological-Vocational Education
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 137
中文關鍵詞: 數位學習數位學習專班科技接受模式自我調整學習數位學習成效
英文關鍵詞: e-Learning, e-Learning Master Program, Technology Acceptance Model, Self-Regulated Learning, e-Learning Outcomes
研究方法: 調查研究
DOI URL: http://doi.org/10.6345/NTNU202301124
論文種類: 學術論文
相關次數: 點閱:276下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討數位學習專班學生使用學習平臺修習數位課程後,感知的自我調整學習能力、科技接受程度與數位學習成效之關係,並驗證影響數位學習專班學生數位學習成效模型,以了解影響數位學習成效之關鍵因素。本研究採調查研究法,以111學年度全臺數位專班在學學生為樣本,使用便利叢集取樣,透過以研究者編修之「數位學習平臺使用感知與學習成效調查問卷」進行資料蒐集。回收有效問卷共205份,所得數據使用描述性統計、結構方程模型等方法進行統計分析與驗證。研究結果包含:一、數位學習專班學生之自我調整學習能力佳,對學習平臺的科技接受程度與數位學習成效的感知程度良好。二、數位學習專班學生之自我調整學習能力、科技接受程度與數位學習成效各變項之間,均具有正向關係。三、數位學習專班學生之自我調整學習能力與科技接受程度可有效預測數位學習成效。依據研究結果,本研究對辦理數位學習專班之學校、行政人員、教師及學生提出具體建議,期以提升辦學及學習成效:一、宜強化數位學習專班學生自我學習策略的實施與監控能力。二、宜持續優化數位學習平臺,提升操作的便利性及友善性,以増加數位學習者對平臺的接受程度。三、數位學習專班教師及行政人員,宜同時關注學生的自我調整學習能力及對數位平臺的接受程度,以有效提升學生數位學習成效。

    This study aimed to explore the relationship between students' self-regulated learning abilities, perceived technological acceptance, and e-learning outcomes in a e-learning master program. The research also sought to validate a model that identifies key factors influencing students' e-learning outcomes. A survey research design was employed, using a clustered sampling method, with students enrolled in the e-learning master program during the 111 academic year as the sample. Data were collected through a researcher-designed "Perceived Usage of Learning Platforms and E-Learning Outcomes Survey." A total of 205 valid responses were obtained, and the data were analyzed using descriptive statistics and structural equation modeling techniques. The major findings were: First, students demonstrated strong self-regulated learning abilities and had a positive perception of the technological acceptance and e-learning outcomes. Secondly, there was a positive relationship among the variables of self-regulated learning abilities, technological acceptance, and e-learning outcomes. Thirdly, both self-regulated learning abilities and technological acceptance among students were found to effectively predict their e-learning outcomes. Based on the results, several suggestions were generated for schools, administrators, teachers, and students implementing in e-learning master program, aiming to enhance the effectiveness of education and learning. These recommendations include: 1) Students of e-learning master program are advised to sharpen their implementation and monitoring of self-learning strategies, 2) Continuous improvement of the learning platform was recommended to enhance its usability and user-friendliness, thus increasing students' acceptance of the learning platform, and 3) Teachers and administrators of the e-learning master program were encouraged to pay attention to students' self-regulated learning abilities and their acceptance of learning platform to effectively improve students' e-learning outcomes.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 7 第三節 研究範圍與限制 7 第四節 名詞釋義 9 第二章 文獻探討 13 第一節 數位學習 13 第二節 科技接受模式 18 第三節 自我調整學習 27 第四節 數位學習成效 33 第三章 研究設計與實施 41 第一節 研究架構與變項 41 第二節 研究對象與抽樣方法 44 第三節 研究工具 45 第四節 研究流程 63 第五節 資料處理與分析方法 65 第四章 研究結果與討論 67 第一節 樣本背景與變項之分析結果 67 第二節 一階驗證性因素分析結果 77 第三節 整體結構模式分析結果 89 第四節 路徑關係分析 95 第五節 綜合討論 101 第五章 結論與建議 111 第一節 結論 111 第二節 建議 114 參考文獻 117 附錄一、數位學習平臺使用感知與學習成效調查預試問卷 129 附錄二、數位學習平臺使用感知與學習成效調查正式問卷 133

    丁毓珊、葉玉珠(2021)。國中生學習心向、學習自我效能與學習適應之關係:以自我調整學習為中介變項之路徑模式分析。教育研究與發展期刊,17(2),83-117。
    方瑀紳、李隆盛(2014)。臺灣數位學習的成效與研究:2000-2011年間國內外研究文獻的回顧與綜整。教育資料與圖書館學,51特刊,27-56。
    王文中(1997)。測驗的建構:因素分析還是 Rasch 分析。調查研究,3,129-166。
    王如哲(2010)。解析「學生學習成效」。評鑑雙月刊,27,62-62。
    王梅玲、張艾琦(2019)。數位學習碩士在職專班研究生線上學習、圖書館使用與學生自評學習成效之研究。圖書館學與資訊科學,45(1),36-64。
    平子航(2019)。以科技接受模式探討技術型高級中等學校學生使用數位學習平台之行為意圖:以自我導向學習為調節變項(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    吳明隆(2009)。結構方程模式—方法與實務運用。高雄市:麗文。
    吳明隆、涂金堂(2014)。SPSS與統計應用分析。臺北市:五南。
    吳明隆、張毓仁(2014)。SPSS (PASW) 與統計應用分析Ⅰ。臺北市:五南。
    吳美美(2004)。數位學習現在與未來發展。圖書館學與資訊科學,30(2),92-106。
    巫文娟(2017)。閱讀投入與學習成效關聯之研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    李勇輝(2017)。學習動機,學習策略與學習成效關係之研究-以數位學習為例。經營管理學刊,14,68-86。
    周君倚、陸洛(2014)。以科技接受模式探討數位學習系統使用態度-以成長需求為調節變項。資訊管理學報,21(1),83-106。
    周斯畏(1999)。網路科技對教育的影響,中華管理評論,11(2),89-96。
    岳修平、梁朝雲(2014)。遠距教育實施與數位教材輔助對工程學習者成效之中介效果影響。教育傳播與科技研究,108,1-15。
    岳修平、梁朝雲(2015)。綜整學生、教師與教學情境考量的遠距教學預測模型。教育資料與圖書館學,52(1),33-57。
    林佳靜(2022)。科技輔助任務導向語言教學對於自我調整學習之影響:以電腦輔助英語教學課程為例。國立臺灣科技大學人文社會學報,18(3),183-213。
    林信志、湯凱雯、賴信志(2010)。以科技接受模式探討大學生學習以網路教學系統製作數位教材之意圖和成效。數位學習科技期刊,2(1),60-78。
    林倚萱、羅家玲、林清文(2018)。教育實習教師應用自我調整學習策略之內涵分析研究。師資培育與教師專業發展期刊,11(3),1-30。
    邱玉菁(2004)。數位學習之學習成果的再思考。教育資料與圖書館學,41(4),561-581。
    孫鈺喬、陳俐文、陳棟樑(2021)。運用科技接受模式探討使用 Microsoft Teams 進行遠距教學之學生學習滿意度。兩岸職業教育論叢,5(1),37-52。
    徐新逸、郭盈芝(2021)。數位學習在技職教育的研究現況及趨勢分析。教科書研究,14(3),79-124。
    徐綺穗(2019)。自我調整學習與核心素養教學:以「自主行動」素養為例。課程與教學,22(1),101-120。
    張艾琦(2017)。數位學習碩士班研究生線上學習、圖書館使用與學習成效之研究(未出版之碩士論文)。國立政治大學,臺北市。
    張春興(2007)。教育心理學-三化取向的理論與實踐-重修二版。臺北:東華。
    張迺貞、周天(2015)。運用 Kirkpatrick 模式評估資訊法律課程在數位學習環境之學習成效。教育資料與圖書館學,52(4),417-450。
    張偉豪、鄭時宜(2012)。與結構方程模型共舞曙光出現:曙光初現。新北市:前程文化。
    教育部遠距教學交流暨認證網(2020)。遠距教學國際比較。取自https://ace.moe.edu.tw/
    教育部遠距教學交流暨認證網(2022)。數位學習專班一覽表。取自https://ace2021.moe.edu.tw/
    陳志恆(2009)。自我調整學習理論對學生課業學習外部干擾的處理與啟示。台灣心理諮商季刊,1(4),1-13。
    陳昭珍、徐芝君、洪嘉馡、胡衍南(2021)。COVID-19 下臺師大的遠距教學經驗與省思。當代教育研究季刊,29(1),1-23。
    陳鈺燕(2015)。大學數位學習碩士專班課程與一般課程在數位學習認證之表現差異分析研究(未出版之碩士論文)。樹德科技大學,高雄市。
    陳慶帆、張雅萍(2017)。電腦遠距課程教學活動設計與實施-以數位碩士在職專班為例。數位與開放學習期刊,7,108-129。
    陳薏文(2016)。技術型高中電機電子群學生自我效能與專題製作學習成效之關係:自我調整學習之中介效果(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    陳鴻仁、楊玉笙、陳貴未、吳婷婷、黃悅民(2012)。應用科技接受模式探討情境式博物館導覽訓練之學習系統。數位學習科技期刊,4(1),43-62。
    程炳林(2002)。多重目標導向,動機問題與調整策略之交互作用。師大學報:教育類,47(1),39-58。
    童瀞萱(2021)。運用科技接受模式探討國小學童科技素養與數位學習行為之關係-以Google Classroom為例(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    黃政傑(1997)。教學原理。臺北市:師大書苑。
    黃珮婷、陳慧娟(2016)。大學生未來時間觀與自我調整學習之關係:知覺工具性的中介效果檢驗。教育心理學報,47(3),329-354。
    廖培瑜(2002)。企業訓練線上學習成效評量之研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    趙珮晴、余民寧(2012)。自律學習策略與自我效能、學習興趣、學業成就的相關研究。教育研究集刊,58(3),1-32。
    歐陽怡(2022)。面對疫情,遠距教學您準備好了嗎?遠距教學學習成效及滿意度之研究。數位與開放學習期刊,9,99-124。
    蔡宗倫、陳美如(2022)。運用適性教學輔助平臺融入數學教學提升自我調整學習能力與學習成效之研究。中等教育,73(2),35-54。
    蔡進雄(2010)。國民中小學學校行政人員研究所在職進修成效評鑑之研究:Kirkpatrick 評估模式之應用。教育行政與評鑑學刊,10,1-26。
    鄭瑞昌、賴煒曾、李家豪(2017)。淺談數位學習應用於成人教育的困境與因應之道。數位與開放學習期刊,7,94-107。
    賴素純、莊雅茹、顏春煌(2014)。Facebook的使用對成人混成式學習之影響。教育科學研究期刊,59(4),65-98。
    聯合報(2022)。遠距教學也能讀碩士 數位學習碩專班累計逾2千人畢業。2022年6月5日。取自https://udn.com/news/story/6885/6365176
    顏春煌(2010)。數位學習:觀念、方法、實務、設計與實作:E-learning。臺北市:碁峰資訊。
    羅方吟、陳政煥(2021)。COVID-19 疫情下同步與非同步資訊科技輔助的大學遠距英語文教學。當代教育研究季刊,29(1),69-114。
    羅藝方、楊淑晴、吳妹容(2015)。以科技接受模式理論探究教師對電子白板融入教學的接受與使用情形。教育學報(香港),43(2),145-172。
    Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl, & J. Beckmann (Eds.), Action-control: From cognition to behavior (pp. 11-39). Springer, Berlin, Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-69746-3_2
    Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211.
    Akkoyunlu, B., & Yılmaz-Soylu, M. (2008). Development of a scale on learners' views on blended learning and its implementation process. The Internet and Higher Education, 11(1), 26-32.
    Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives. London, UK: Longman.
    Azlan, C. A., Wong, J. H. D., Tan, L. K., Huri, M. S. N. A., Ung, N. M., Pallath, V., ... & Ng, K. H. (2020). Teaching and learning of postgraduate medical physics using Internet-based e-learning during the COVID-19 pandemic–A case study from Malaysia. Physica Medica, 80, 10-16.
    Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological review, 84(2), 191-215.
    Barnard, L., Lan, W. Y., To, Y. M., Paton, V. O., & Lai, S. L. (2009). Measuring self-regulation in online and blended learning environments. The internet and higher education, 12(1), 1-6.
    Barnard-Brak, L., Paton, V. O., & Lan, W. Y. (2010). Profiles in self-regulated learning in the online learning environment. International Review of Research in Open and Distributed Learning, 11(1), 61-80.
    Behera, S. K. (2013). E-and M-Learning: A comparative study. International journal on new trends in education and their implications, 4(3), 65-78.
    Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (Eds.) (1956). Taxonomy of educational objectives: Handbook I: Cognitive domain. New York: David Mckay.
    Boekaerts, M. (1997). Self-regulated learning: A new concept embraced by researchers, policy makers, educators, teachers, and students. Learning and instruction, 7(2), 161-186.
    Boekaerts, M. (1999). Self-regulated learning: Where we are today. International journal of educational research, 31(6), 445-457.
    Boekaerts, M., & Corno, L. (2005). Self‐regulation in the classroom: A perspective on assessment and intervention. Applied psychology, 54(2), 199-231.
    Castro, M. D. B., & Tumibay, G. M. (2021). A literature review: efficacy of online learning courses for higher education institution using meta-analysis. Education and Information Technologies, 26(2), 1367-1385.
    Cavanaugh, J. K., & Jacquemin, S. J. (2015). A large sample comparison of grade based student learning outcomes in online vs. face-to-face courses. Online learning, 19(2), 25-32.
    Cicha, K., Rizun, M., Rutecka, P., & Strzelecki, A. (2021). COVID-19 and higher education: First-year students’ expectations toward distance learning. Sustainability, 13(4), 1889.
    Connolly, T. M., MacArthur, E., Stansfield, M., & McLellan, E. (2007). A quasi-experimental study of three online learning courses in computing. Computers & Education, 49(2), 345-359.
    Cui, Y. (2021). Self-efficacy for self-regulated learning and chinese students’ intention to use online learning in covid-19: A moderated mediation model. International Journal of Information and Education Technology, 11(11), 532-537.
    Davis, F. D. (1986), A Technology Acceptance Model for Empirically Testing New End-User Information System: Theory and Results (Unpublished doctoral dissertation), MIT Sloan School of management, Cambridge, MA.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. Retrieved from https://doi.org/10.2307/249008
    Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management science, 35(8), 982-1003.
    Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Boston, MA: Addison- Weslsy.
    Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
    Garrison, D. R. (2016) E-Learning in the 21st Century: A Framework for Research and Practice. 3nd ed. New York: Routledge.
    George, D., & Mallery, P. (2003). SPSS for Windows step by step: A simple guide and reference. 11.0 update (4th ed.). Boston: Allyn & Bacon.
    Gregory, V. L. (2013). Assessment of student learning outcomes in distance education. In Advancing library education: Technological innovation and instructional design (pp. 172-182). Hershey, Pennsylvania: IGI Global.
    Guay, F., Ratelle, C. F., & Chanal, J. (2008). Optimal learning in optimal contexts: The role of self-determination in education. Canadian psychology/Psychologie canadienne, 49(3), 233.
    Hair, J. F., Anderson, R. E., Babin, B. J., & Black, W. C. (2010). Multivariate data analysis (Vol. 7). Upper Saddle River, NY: Pearson.
    Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis (5th ed.). New York: Macmillan.
    Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (6th ed.). New Jersey: Prentice-Hall.
    Han, J. H., & Sa, H. J. (2022). Acceptance of and satisfaction with online educational classes through the technology acceptance model (TAM): The COVID-19 situation in Korea. Asia Pacific Education Review, 23(3), 403-415.
    Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36.
    Keegan, D. (1993). Theoretical principles of distance education. London, UK: Routledge.
    Kirkpatrick, D. L., & Kirkpatrick, J. D. (2006) Evaluating Training Programs: The Four Levels (3rd ed.). San Francisco, CA: Berrett-Koehler.
    Landrum, B. (2020). Examining students’ confidence to learn online, self-regulation skills and perceptions of satisfaction and usefulness of online classes. Online Learning, 24(3), 128-146.
    Lederman, D. (2018, Nov 7). Online education ascends. Inside Higher Ed. https://www.insidehighered.com/digital-learning/article/2018/11/07/new-data-onlineenrollments-grow-and-share-overall-enrollment
    Li, L. Y., & Tsai, C. C. (2017). Accessing online learning material: Quantitative behavior patterns and their effects on motivation and learning performance. Computers & Education, 114, 286-297.
    Marinoni, G., Van’t Land, H., & Jensen, T. (2020). The impact of Covid-19 on higher education around the world. IAU global survey report, 23, 1-17.
    Oztok, M., Zingaro, D., Brett, C., & Hewitt, J. (2013). Exploring asynchronous and synchronous tool use in online courses. Computers & Education, 60(1), 87-94.
    Panadero, E. (2017). A review of self-regulated learning: Six models and four directions for research. Frontiers in psychology, 422. Retrieved from https://www.frontiersin.org/articles/10.3389/fpsyg.2017.00422/full
    Pintrich, P. R. (1995). Understanding self‐regulated learning. New directions for teaching and learning, 1995(63), 3-12.
    Pintrich, P. R. (1999). The role of motivation in promoting and sustaining self-regulated learning. International journal of educational research, 31(6), 459-470.
    Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning. In M. Boekaerts, Pintrich, P. R., & M. Zeidner (Eds.), Handbook of self-regulation (pp. 451-502). San Diego, CA: Academic Press.
    Pintrich, P. R. (2004). A conceptual framework for assessing motivation and self-regulated learning in college students. Educational Psychology Review, 16(4), 385-407. Retrieved from https://www.jstor.org/stable/23363878
    Salloum, S. A., Alhamad, A. Q. M., Al-Emran, M., Monem, A. A., & Shaalan, K. (2019). Exploring students’ acceptance of e-learning through the development of a comprehensive technology acceptance model. IEEE access, 7, 128445-128462.
    Schaefer, P. S., Williams, C. C., Goodie, A. S., & Campbell, W. K. (2004). Overconfidence and the Big Five. Journal of Research in Personality, 38(5), 473-480.
    Seaman, J. E., Allen, E., & Seaman, J. (2018). Grade increase-Tracking distance education in the United States. Oakland: Babson Survey Research Group. Retrieved from https://files.eric.ed.gov/fulltext/ED580852.pdf
    Sharma, S. K., & Kitchens, F. L. (2004). Web services architecture for m-learning. Electronic Journal of e-Learning, 2(1), 203-216.
    Siemens, G., Gašević, D., Dawson, S. (2015). Preparing for the digital university: a review of the history and current state of distance, blended, and online learning. Edmonton, AB: Athabasca University.
    Simpson, E. J. (1966). The classification of educational objectives, psychomotor domain. Illinois Journal of Home Economics, 10(4), 110-144.
    Song, L. & Hill, J. R. (2007). A conceptual model for understanding self-directed learning online. Journal of Interactive Online Learning, 6(1), 27-42.
    Sung, E., & Mayer, R. E. (2012). When graphics improve liking but not learning from online lessons. Computers in human behavior, 28(5), 1618-1625.
    UNESCO (2020). 290 million students out of school due to COVID-19: UNESCO releases first global numbers and mobilizes response. UNESCO.
    Urdan T.A. & Weggen C.C. (2000). Corporate E-Learning: Exploring a New Frontier, San Francisco, CA: WR Hambrecht and Co. Retrieved from http://papers.cumincad.org/data/works/att/2c7d.content.pdf
    Vovides, Y., Sanchez-Alonso, S., Mitropoulou, V., & Nickmans, G. (2007). The use of e-learning course management systems to support learning strategies and to improve self-regulated learning. Educational Research Review, 2(1), 64-74.
    Zimmerman, B. (1999). Commentary: toward a cyclically interactive view of self regulated learning. Educational Research, 31(545), 551.
    Zimmerman, B. J. (1986). Becoming a self-regulated learner: Which are the key subprocesses?. Contemporary educational psychology, 11(4), 307-313.
    Zimmerman, B. J. (1998). Developing self-fulfilling cycles of academic regulation: An analysis of exemplary instructional models. In D. H. Schunk & B. J. Zimmerman (Eds.), Self regulated learning: From teaching to self-reflective practice (pp. 1-19). New York: Guilford.
    Zimmerman, B. J. (2000). Attaining self-regulation: A social cognitive perspective. Handbook of self-regulation (pp. 13-39). San Diego, CA: Academic Press.
    Zimmerman, B. J. (2001). Theories of self-regulated learning and acdemic achievement: an overview and analysis. In D.H. Schunk & B. J. Zimmerman (2nd eds.), Self-regulated learning and academic achievement theoretical perspectives (pp. 2-37). Mahwah, NJ: Lawrence Erlbaum Associates.
    Zimmerman, B. J. (2002). Becoming a Self-Regulated Learner: An Overview, Theory Into Practice, 41(2), 64-70.
    Zimmerman, B. J., Bonner, S., & Kovach, R. (1996). Developing self-regulated learners: Beyond achievement to self-efficacy. American Psychological Association. Retrieved from https://doi.org/10.1037/10213-000

    下載圖示
    QR CODE