研究生: |
陳佳慧 |
---|---|
論文名稱: |
含磷硫多牙基之鎳錯合物將磷硫多牙基與乙腈轉換成磷硫醚異核環化物之相關研究 Conversion of Nitriles with (2-Mercaptophenyl)phosphines to Phosphine Thioether Heterocycle in the Presence of Nickel (2-Mercaptophenyl)phosphine Complexes |
指導教授: |
李位仁
Lee, Way-Zen |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 腈類水解 |
英文關鍵詞: | nitrile hydrolysis |
論文種類: | 學術論文 |
相關次數: | 點閱:227 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
我們利用P(C6H5)(o-C6H4SH)2 (PS2)和P(C6H5)2(o-C6H4SH) (PS1)分別與[Ni(CH3CN)6](ClO4)2在乙腈或丙腈溶劑下反應,可得[Ni(P(C6H5)(o-C6H4S)(o-C6H4SC(CH3)NH2)2)](ClO4)2 (1)、[Ni(P(C6H5)(o- C6H4S)(o-C6H4SC(CH3CH2)NH2)2)](ClO4)2 (2)、[Ni2(P(C6H5)(o-C6H4S)2)] (4)、(P((o-C6H4SC(CH3)NH3)(C6H5)2))(ClO4)2 (5)等四種化合物,然而在合成錯合物1及2的過程中,會產生[Ni(P(C6H5)(o-C6H4S)(o-C6H4SH))2] (3);從結構上發現錯合物1、2含有由乙腈轉換來的硫亞胺酯,與腈水解酶催化機制中產生的酵素鍵結-醯胺硫醚中間物結構相似,而化合物5含有由乙腈轉換來的硫胺基,同樣也類似腈水解酶催化機制中產生的中間物。另外,在與上述類似的反應條件下加入10倍量之60%的過氯酸水溶液後,經分離可得到錯合物4和(P(o-C6H4SC(CH3)NHCOCH2CH3)- (C6H5)(o-C6H4SH))(ClO4) (7) (在丙腈中反應)或錯合物4 和(P(o-C6H4SCH3)NHCOCH3)(C6H5)(o-C6H4SH))(ClO4) (8) (在乙腈中反應)。藉由一連串的實驗結果,推測錯合物1和4可能是將乙腈及PS2活化進而得到化合物8及NH4ClO4的催化劑。故將PS2和60% 的過氯酸水溶液反應分別加入少量的錯合物1或4反應,所得到的實驗結果發現由錯合物1進行催化反應可得化合物8的產率增加為2倍,而由錯合物4催化可得3倍的化合物8。在相似反應條件下,當PS1與60 %的過氯酸水溶液在乙腈溶劑下反應20 ~ 30天,其結果和之前實驗成果不同,可得到[O=P(C6H5)2(o-C6H4S)]2 (6)、NH4ClO4和CH3COOH。
Abstract
Two ligands, P(C6H5)(o-C6H4SH)2 (PS2) and P(C6H5)2(o-C6H4SH) (PS1), were employed to react with [Ni(CH3CN)6](ClO4)2 in acetonitrile or propionitrile to form three nickel complexes, [Ni(P(C6H5)(o-C6H4S)(o- C6H4SC(CH3)NH2)2)](ClO4)2 (1), [Ni(P(C6H5)(o-C6H4S)(o-C6H4SC(CH3- CH2)NH2)2)](ClO4)2 (2), and [Ni2(P(C6H5)(o-C6H4S)2)] (4), and a heterocycle phosphine of (P((o-C6H4SC(CH3)NH3)(C6H5)2))(ClO4)2 (5). The conversion of acetonitrile or propionitrile to thioimino ester on the mercapto phosphine ligands of nickel complexes 1 and 2 were observed. The resulting thioimino ester groups of these conversions are similar to the intermediate proposed in the catalytic mechanism of nitrilase. In the previous reactions, which producing complexe 1 or 2, an intermediate, [Ni(P(C6H5)(o-C6H4S)(o- C6H4SH))2] (3), was formed first, and precipitated as a green solid. The uncoordinated thiol groups of complex 3 will attack the unsaturated carbon of nitriles, to generate complex 1 in acetonitrile or to form complex 2 in propionitrile. By adding tenfold HClO4(aq) (60 %) to a nitrile solution of complex 1, compound 4 and P((o-C6H4SC(CH3)NHCOCH2CH3)(C6H5)(o- C6H4SH))(ClO4) (7) (in propionitrile), or compound 4 and P[(o-C6H4SC(CH3)NHCOCH3)(C6H5)(o-C6H4SH)](ClO4) (8) (in acetonitrile) were produced. From the formation of compound 8 and NH4ClO4 in acetonitrile, complexes 1 and 4 were considered to be the catalysts for the reactions mentioned above. Our study for this catalytic reaction shows the yield of product 8 increasing about 2 fold by complex 1, and 3 fold by complex 4. As PS1 reacted with HClO4(aq) (60 %) in acetonitrile for 20 ~ 30 days, [O=P(C6H5)2(o-C6H4S)]2 (6), NH4ClO4, and CH3COOH were isolated. The resulting products are different from those produced by the reaction of PS2.
參考文獻
1. Kukushkin, V. Y.; Pombeiro, A. J. L. Chem. Rev. 2002,
102, 1771.
2. Schaefer, F. C.; Peters, G. A. J. Org. Chem. 1961,
26, 412.
3. Kobayashi, M.; Shimizu, S. FEMS, Microbiology
Letters. 1994, 120, 217.
4. Cobley, C. J.; van den Heuvel, M.; Abbadi, A.; de
Vries, J. G. Tetrahedron Let. 2000, 41, 2467.
5. Bennett, M. A.; Robertson, G. B.; Whimp, P. O.;
Yoshida, T. J. Am. Chem. Soc. 1973, 95, 3030.
6. Ghaffar, T.; Parkins, A. W. J. Mol. Catal. A: Chem.
2000, 160, 249.
7. Nagasawa, T.; Yamada, H. Pure Appl. Chem. 1995, 67,
1241.
8. Nagasawa, T.; Mathew, C. D.; Mauger, J.; Yamada, H.
Appl. Environ. Microbiol. 1988, 54, 1766.
9. Gaedesdasiva, N. F. C.; Ferreira, C. M. P.; Branco,
E. M. P. R. P.; Fraústo da Silva, J. J. R.; Pombeiro,
A. J. L.; Michelin, R. A.; Belluco, U.; Bertani, R.;
Mozzon, M.; Bombieri, G.; Benetollo, F.; Kukushkin,
V. Y. Inorg. Chim. Acta. 1997, 265, 267.
10. Pombeiro, A. J. L.; Hughes, D. L.; Richards, R. L. J.
Chem. Soc. Chem. Commun. 1988, 1052.
11. Maakarycheva-Mikhailova, A. V.; Bokach, N. A.;
Kukushkin, V. Y.; Kelly, P. F.; Gilby, L. M.;
Kuznetsov, M. L.; Holmes, K. E.; Haukka, M.; Parr,
J.; Stonehouse, J. M.; Elsegood, M. R.; Pombeiro, A.
J. L. Inorg. Chem. 2003, 42, 301
12. Kopylovich, M. N.; Kukushkin, V. Y.; Haukka, M.;
Fraústo da Silva J. J. R.; Pombeiro, A. J. L. Inorg.
Chem. 2002, 41, 4798.
13. Grigg, J.; Collison, D.; Garner, C. D.; Helliwell,
M.; Tasker, P. A.; Thorpe, J. M. J. Chem. Soc. Chem.
Commun. 1993, 1807.
14. Gothelf, K. V.; Jørgensen, D. A. Chem. Rev. 1998, 98,
863.
15. Kozikowski, A. P.; Kitagawa, Y.; Springer, J. P. J.
Chem. Soc. Chem. Commun. 1983, 1460.
16. Carney, M. J.; Walsh, P. J.; Hollander, F. J.;
Bergman, R. G. Organometallics 1992, 11, 761.
17. 許育禎,國立台灣師範大學化學研究所碩士論文,2006.
18. Kim, J. S.; Reibenspies, J. H.; Darensbourg, M. Y. J.
Am. Chem. Soc. 1996, 118, 4115.
19. Reilly, C. O.; Turner, P. D. J. Appl. Microbiol.
2003, 95, 1161.
20. L’Esperance, R. P.; West, A. P., Jr; Van Engen, D.;
Pascal, R. A., Jr. J. Am. Chem. Soc. 1991, 113, 2672.
21. Figuly, G. D.; Loop, C. K.; Martin, J. C. J. Am.
Chem. Soc. 1989, 111, 654.
22. Block, E.; Eswarakrishnan, V.; Gernon, M.; Ofori-
Okai, G.; Saha, C.; Tang, K.; Zubieta, J. J. Am.
Chem. Soc. 1989, 111, 658.
23. Pérez-Lourido, P.; Romero, J.; Garcia-Vázquez, J. A.;
Sousa, A.; Zubieta, J.; Maresca, K. Polyhedron 1998,
17, 4457.